
mathematical reasoning, proofs, logic

Mathematical Statements
The Concept of a Mathematical Statement

Definition 2.1: A matheamtical statement (proposition) is
a statement that is ture or false in an absolute, indisputable
sense, according to the laws of mathematics.

Composition of Mathematical Statements
a ’and’ b: both, a, b, must be true for the composition to be
true
S ⇒ T (implication): If S is true, then T is true.

The Concept of a Proof
The purpose of a proo is to demonstrate (or prove) a mathe-
matical statement S.

Examples of Proofs
Claim: n is not prime ⇒ 2n − 1 is not prime.
Proof. n = ab, a > 1, a < n. 2ab − 1 = (2a −
1)

b−1
i=0 2ia

Examples of False Proofs
Not relevant for the exam, I guess.

Two Meanings of =⇒
(a) composed statements S ⇒ T . (b) derivation step in a
proof. To avoid confusion, we use

.=⇒ for (b).
A standard proof pattern is a sequence of implications, each
step denoted with

.=⇒. The justification must be clear -
stated in accompanying text/line remark (or implicitly).

Proofs Using Several Implications
To prove S ⇒ T , one might must do: S

.=⇒ S1, S
.=⇒

S2, S1
.=⇒ S3, S1

.=⇒ S4, S2
.=⇒ S5, S3 and S5

.=⇒
S6, S1 and S4

.=⇒ S7, S6 and S7
.=⇒ T .

An Informal Understanding of the Proof Concept
Definition 2.2 (informal): A proof of a statement S is a
sequence of simple, easily verifiable, consecutive steps. The
proof starts from a set of axioms (things postulated to be true)
and known (previously proved) facts. Each step corresponds
to the application of a derivation rule to a few already proven
statements, resulting in a newly proven statement, until the
final step results in S.

Informal vs. Formal Proofs
Most proofs are quite informal. Benefits of formal proofs:
Prevention of errors, Proof complexity and automatic ver-
ification, Precision and deeper understanding. The border
between informal/formal proofs is fluent and varies accross
scientific fields.

The Role of Logic
Not relevant here.

Proofs in this Course
Proof sketch/idea: non-obvious ideas are described, but not
spelled out in detail with explicit references to all definitions
etc.
Complete proof: use of every definition etc. explicit. Every
step justified by stating the rule or definition applied.
Formal proof: Phrased in a given proof calculus.

A First Introduction to Propositional Logic
Not relevant here, later in great detail.

A First Introduction to Predicate Logic
Not relevant here, later in great detail.
Logical Formulas vs. Mathematical Statements
Not relevant here, later in great detail.

proof patterns
Composition of Implications

Definition 2.12: The proof step of composing implications
is as follows: If S ⇒ T and T ⇒ U are both true, then
S ⇒ U is true.

Lemma 2.5: (A → B) ∧ (B → C) |= A → C
Direct Proof of an Implication

Definition 2.13: Direct proof of S ⇒ T : assuming S, prov-
ing T under that assumption.

Indirect Proof of an Implication
Definition 2.14: Indirect proof of S ⇒ T : assuming T is
false, proving S is false under that assumption.
Lemma 2.6: ¬B → ¬A |= A → B

Modus Ponens
Definition 2.15: A proof of statement S by modus ponens:

1. Find a suitable mathematical statement R.
2. Prove R.
3. Prove R ⇒ S.

Lemma 2.7: A ∧ (A → B) |= B
Case Distinction

Definition 2.16: A proof of statement S ba case distinction:

1. Fina finite list R1, ..., Rk of mathematical statements
(cases)

2. Prove that one of the Ri is always true (one case oc-
curs)

3. Prove Ri ⇒ S for i = 1, ..., k

Lemma 2.8: (A1 ∨ ... ∨ Ak) ∧ (A1 → B) ∧ ... ∧ (Ak →
B) |= B

Proof by Contradiction
Definition 2.17: A proof by contradiction of statement S:

1. Find a suitable mathematical statement T .
2. Prove that T is false.
3. Assume that S is false and prove (from this assump-

tion) that T is true (a contradiction.

Lemma 2.9: (¬A → ¬B) ∧ ¬B |= A
Existence Proofs

Definition 2.18: Consider a set X of parameters and for
each x ∈ X a statement denoted Sx. An existence proof is a
proof of the statement that Sx is true for at least one x ∈ X .
An existence proof is constructive if it exhibits an a for which
Sa is true, and otherwise it is non-constructive.

Existence Proofs vis the Pingeonhole Principle
Theorem 2.10: If a set of n objects is partitioned into k < n
sets, then at least one of these sets contains at least ⌈ n

k
⌉ ob-

jects.
Proofs by Counterexample

Definition 2.19: Consider a set X of parameters and for
each x ∈ X a statement denoted Sx. A proof by counterex-
ample is a proof of the statement that Sx is not true for all
x ∈ X , by exhibiting an a (called counterexample) such that
Sa is false.

Proofs by Induction
Definition:

1. Base case: Prove P (0).
2. Induction step: Prove that for any arbitrary n we have

P (n) ⇒ P (n + 1)

Theorem 2.11: universe N, arbitrary unary predicate P :
P (0) ∧ ∀n(P (n) → P (n + 1)) ⇒ ∀nP (n).

sets, relations, functions

introduction
Definition 3.1 (informal): The number of elements of a fi-
nite set A is called its cardinality and is denoted |A|.

Russell’s Paradox

This shows flaws in Cantor’s early definition of sets/set the-
ory. Set theory was then based on more rigorous grounds.
Zermelo-Fraenkel (ZF) set theory most wiedely considered
set of axioms.
R = {A|A ∕∈ A} - set of sets, which are not elements of
themselves. Zermelo’s aximoatization: Fo rany set B and
predicate P : {x ∈ B|P (x)} is a set, P : {x|P (x)} is not a
set.

sets and operations on sets
The Set Concept

Universe of possible sets. Universe of objects (may be ele-
ments of sets). Both universes may be the same.

Binary predicate E: E(x, y) = 1 def⇐⇒ x is an element of y
- x ∈ y.

Set Equality and Constructing Sets From Sets
Definition 3.2 - axiom of extensionality: A = B

def⇐⇒
∀x(x ∈ A ↔ x ∈ B)
a is a set. Then, the set {a} exists.
For finite liste of sets a, b, c, ... Then, the set {a, b, c, ...}
exists.
Lemma 3.1: For any (sets) a and b, {a} = {b} ⇒ a = b.
If cardinality > 1, this does not hold. But we may considere
ordered lists of objects, then this still holds. An (ordered) list
of k objects a1, ..., ak is denoted (a1, ..., ak). Two lists of
same length are equal if they agree in every component.

Subsets
Definition 3.3: A set A is a subset of the set B, denoted
A ⊆ B, if every element of A is also an element of B.

A ⊆ B
def⇐⇒ ∀x(x ∈ A → x ∈ B).

Lemma 3.2: A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)
Lemma 3.3: For any sets A, B, C: A ⊆ B ∧ B ⊆ C ⇒
A ⊆ C.

Union and Intersection
Definition 3.4: The union of two sets A and B is defined as
A ∪ B

der= {x|x ∈ A ∨ x ∈ B}. And their intersection is

defined as A ∩ B
def= {x|x ∈ A ∧ x ∈ B}.

A non-empty set of sets.

A def= {x|x ∈ A for some A ∈
A}. Analogous for ∩.
Definition 3.5: The difference of sets B and A, denoted
B\A is the set of elements of B without those that are ele-

ments of A: B\A
def= {x ∈ B|x ∕∈ A}.

Theorem 3.4:

• A ∩ A = A and A ∪ A = A (idempotence)
• A∩B = B∩A and A∪B = B∪A (commutativity)
• A ∩ (B ∩ C) = (A ∩ B) ∩ C and A ∪ (B ∪ C) =

(A ∪ B) ∪ C (associativity)
• A∩(A∪B) = A and A∪(A∩B) = A (absorption)
• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivity)
• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (distributivity)
• A ⊆ B ⇔ A∩B = A ⇔ A∪B = B (consistency)

The Empty Set
Definition 3.6: Set A is called empty if it contains not ele-
ments. ∀x¬(x ∈ A).
Lemma 3.5: There is only one empty set (which is often
denoted as ∅ or {}).
Lemma 3.6: The empty set is a subset of every set, i.e.,
∀A(∅ ⊆ A).

Constructing Sets from the Empty Set
Note that {∅} ∕= ∅. We may construct various sets from ∅:
∅, {∅}, {{∅}}, {{{∅}}}.

A Construction of the Natural Numbers

0 def= ∅, 1 def= {∅}, 2 def= {{∅}}, ... The successor of set n
(s(n)) is defined as s(n) def= n ∪ {n}. We define addition as

m + 0 def= m and m + s(n) def= s(m + n).
Power Set of a Set

Definition 3.7: The power set of a set A, denoted P(A), is

the set of all subsets of A: P(A) def= {S|S ⊆ A}
If |A| = k. Then |P(A)| = 2k .

The Cartesian Product of Sets
Definition 3.8: The Cartesian product A × B of two sets
A and B is the set of all ordered pairs with the first compo-

nent from A and the second component from B: A × B
def=

{(a, b)|a ∈ A ∧ b ∈ B}.
|A × B| = |A| · |B|.

relations
the Relation Concept

Definition 3.9: A (binary) relation ρ from a set A to a set
B (also called an (A, B)-relation) is a subset of A × B. If
A = B, ρ is called a relation on A.
Insetad of (a, b) ∈ ρ one usually write aρb (and (a, b) ∕∈ ρ:
a ∕ ρb).
Definition 3.10: For any set A, the identity relation on
A, denoted idA (or simply id), is the realation idA =
{(a, a)|a ∈ A}.
There are 2n2

different relations on a set o fcardinality n.
The relation concept can be generalized from binary to k-ary
relations. Such realtions play an important role in modeling
relational databases.

Representing Relations
For finite sets A and B, ρ from A to B can be represented
as a boolean |A| × |B| matrix Mρ with rows and columns
labeled by the elements of A and B respectively. For a ∈ A

and b ∈ B, Mρ
ab = 1 def⇐⇒ aρb.

Alternatively, directed graph G = (V, E) with |A|+|B| ver-

tices labeled by the elements of A and B. (a, b) ∈ E
def⇐⇒

aρb. Such a graph may contain loops, for instance if ρ on
some set.

Set Operations on Relations
...

The Inveres of a Relation
Definition 3.11: The inverse of a relation ρ from A to B is

the relation ρ̂ from B to A defined by ρ̂
def= {(b, a)|(a, b) ∈

ρ}.
For all a, b we have bρ̂a ⇔ aρb. Alternative for ρ̂ is ρ−1.

Composition of Relations
Definition 3.12: ρ relation from A to B. σ relation
from B to C. Then, the composition of ρ and σ, denoted
ρ ◦ σ (or also ρσ), is the relation from A to C defined by

ρ ◦ σ
def= {(a, c)|∃b((a, b) ∈ ρ ∧ (b, c) ∈ σ)}.

Lemma 3.7: The composition of relations is associative.
ρ ◦ (σ ◦ φ) = (ρ ◦ σ) ◦ φ.
In matrix representation: Matrix multiplication with all en-
tries > 1 set to 1. Graph representation: aρσc if and only if
path from a to c.
Lemma 3.8: ρ form A to B. σ from B to C. ρ̂σ = σ̂ρ̂.

Special Properties of Relations
Definition 3.13: ρ on A is reflexive if aρa is true for all
a ∈ A: id ⊆ ρ.
Matrix representation: Diagonal only contains 1. Graph: All
loops.
Definition 3.14: ρ on A irreflextive if a ∕ ρb for all a ∈ A.
ρ ∩ id = ∅.
Definition 3.15: ρ on A is symmetric if aρb ⇔ bρa for all
a, b ∈ A: ρ = ρ̂.

1

Matrix representation: matrix symmetric. Graph: undirected
graph.
Definition 3.16: ρ on A antisymmetric if aρb∧bρa ⇒ a =
b is true for all a, b ∈ A: ρ ∩ ρ̂ ⊆ id.
Graph: no cycle of length 2.
Definition 3.17: ρ on A is transitive if aρb ∧ bρc ⇒ aρc is
true for all a, b, c ∈ A.
Lemma 3.9: ρ transitive if and only if ρ2 ⊆ ρ.

Transitive Closure
ρn ⊆ ρ for n > 1.
Definition 3.18: The transitive closure of a relation ρ on a
set A, denoted ρ∗, is ρ∗ =

n∈N\{0} ρn.

Graph: aρkb if and only if walk of length k from a to b.
Transitive closure is the reachability relation. aρ∗b if and
only if thre is a path from a to b.

equivalence relations
Definition of Equivalence Relation

Definition 3.19: An equivalence relation is a relation on a
set A that is reflexive, symmetric, and transitive.
Definition 3.20: For an equivalence relation θ on a set A
and for a ∈ A, the set of elements of A that are equivalent
to a is called the equivalence class of A and is denoted [a]θ:

[a]θ
def= {b ∈ A|bθa}.

Lemma 3.10: The intersection of two equivalence realtions
(on the same set) is an equivalence relation.

Equivalence Classes Form a Partition
Definition 3.21: A partition of a set A is a set of mutually
disjoint subsets of A that cover A. {Si|i ∈ I} of sets Si

satisfying Si ∩ Sj = ∅ for i ∕= j and

i∈I Si = A.
Relation ≡: Two elementents are ≡-related if and only if
they are in the same set of the partition.
Definition 3.22: The set of equivalence classes of an equiv-

alence relation θ, denoted by A/θ
def= {[a]θ|a ∈ A} is called

the quotient set of A by θ, or simply A modulo θ, or A
mod θ.
Theorem 3.11: The set A/θ of equivalence classes of an
equivalence relation θ on A is a partition of A.

Example: Definition of the Rational Numbers
A = Z × (Z\{0}). We define ∼ with (a, b) ∼ (c, d) def⇐⇒
ad = bc. It can be shown that ∼ is reflexive, symmetric, and
transitive. To every equivalence class [(a, b)] we associate

the rational number a/b. Thus, Q def= (Z × (Z\{0}))/ ∼.
partial order relations

Definition
Definition 3.23: A partial order (or simply order relation)
on a set A is a relation that is reflexive, antisymmetric, and
transitive. A set A together with a partial order ≼ on A is
called partially ordered set (or simply poset) and is denoted
as (A; ≼).

a ≺ b
def⇐⇒ a ≼ b ∧ a ∕= b.

Definition 3.24: For a poset (A; ≼), two elements a and b
are called comparable if a ≼ b or b ≼ a; otherwise, they are
called incomparable.
Definition 3.25: If any two elements of a poset (A; ≼) are
comparable, then A is called totally ordered (or linearly or-
dered) by ≼.

Hasse Diagrams
Definition 3.26: In a poset (A; ≼) an element b is said to
cover an element a if a ≺ b and there exists no c with a ≺ c
and c ≺ b.
Definition 3.27: The Hasse diagram of (finite) poset (A; ≼)
is the directed graph whose vertices are labeled with the el-
ements of A and where there is an edge from a to b if and
only if b covers a.

It is usually drawn such that whenever a ≺ b, b is places
higher than a. Then, all arrows are directed upwards and can
be omitted.
Combinations of Posets and the Lexicographic Order
Definition 3.28: For given posets (A; ≼) and (B; ⊑),
their direct produce denoted (A; ≼) × (B; ⊑), is the set
A × B with the relation ≤ (on A × B) defined by (a1b1) ≤
(a2, b2) def⇐⇒ a1 ≼ a2 ∧ b1 ⊑ b2.
Theorem 3.12: (A; ≼) × (B; ⊑) is a partially ordered set.
Theorem 3.13: For given posets (A; ≼) and (B; ⊑),
the relation ≤lex defined on A × B by (a1, b1) ≤lex

(a2, b2) def⇐⇒ a1 ≺ a2 ∨ (a1 = a2 ∧ b1 ⊑ b2) is a partial
order relation.
If both (A; ≼) and (B; ⊑) are totally ordered, then so is
≤lex.

Special Elements in Posets
Definition 3.29: (A; ≼) poset. S ⊆ A. Then:

1. a ∈ A is a minimal (maximal) element of A if there
exists no b ∈ A with b ≺ a (b ≻ a).

2. a ∈ A is the least (greatest) element of A if a ≼ b
(a ≽ b) for all b ∈ A.

3. a ∈ A is a lower (upper) bound of S if a ≼ b (a ≽ b)
for all b ∈ S.

4. a ∈ A is the greatest lower bound (least upper
bound) of S if a is the greatest (least) element of the
set of all lower (upper) bounds of S.

Definition 3.30: A poset (A; ≼) is well-ordered if it is to-
tally ordered and if every non-empty subset of A has a least
element.
Note: eveyr totally ordered finite poset is well-ordered.

Meet, Join, and Lattices
Definition 3.31: Let (A; ≼) be a poset. If a and b have a
greatest lower bound, then it is called the meet of a and b,
often denoted a∧b. If a and b have a least upper bound, then
it is called the join of a and b, often denoted a ∨ b.
Definition 3.32: A poset (A; ≼) in which every pair of ele-
ments has a meet and a join is called a lattice.

functions
Functins are a special type of relation.
Definition 3.33: A function F : A → B from a domain A
to a codomain B is a relation from A to B with the special
properties:

1. ∀a ∈ A, ∃b ∈ B: afb (F is totally defined)
2. ∀a ∈ A, ∀b, b′ ∈ B: (afb ∧ afb′ → b = b′) (f is

well-defined)

Definition 3.34: The set of all functions A → B is denoted
BA.
Definition 3.35: A partial function A → B is a relation
from A to B such that condition 2. above holds.
Two (partial) functions with common domain A and
codomain B are equal if they are equal as relations.
Definition 3.36: For a function f : A → B and a sub-
set S of A, the image of S under f , dnoted f(S), is the set

f(S) def= {f(a)|a ∈ S}.
Definition 3.37: The subset f(A) of B is called the image
(or range) of f and is also denoted Im(f).
Definition 3.38: For a subset T of B, the preimage of T ,
denoted f−1(T), is the set of values in A that ap into T :

f−1(T) def= {a ∈ A|f(a) ∈ T }
Definition 3.39: f : A → B is called

1. injective (or on-to-one/an injection) if for a ∕= b, we
have f(a) ∕= f(b)

2. surjective (or onto) if f(A) = B - for every b ∈ B,
b = f(a) for some a ∈ A

3. bijective (or a bijection) if it is both injective and sur-
jective

Definition 3.40: For a bujective function f , the inverse is
called the inverse function of f , usually denoted as f−1.
Definition 3.41: The composition of a function f : A → B
and a function g : B → C, denoted g ◦ f or simply gf , is
defined by (g ◦ f)(a) = g(f(a)).
Notice that this notation is ambigous. Because the order for
notation is different than the one used for compositions or
relations.
Lemma 3.14: Function composition is associative: (h◦g)◦
f = h ◦ (g ◦ f).

countable and uncountable sets
Countability of Sets

Definition 3.42:

• Two sets A, B are equinumerous (A ∼ B) if there
exists a bijection A → B.

• The set B dominates the set A (A ≼ B) if A ∼ C
for some subset C ⊆ B/an injection A → B exists.

• A set A is called countable if A ≼ N, and uncount-
able otherwise.

Lemma 3.15: (i) - The relation ≼ is transitive. & (ii) -
A ⊆ B ⇒ A ≼ B.
Theorem 3.16 - Bernstein-Schröder theorem: A ≼ B ∧
B ≼ A ⇒ A ∼ B.

Between Finite and Countably Infinite
For finite A, B: A ∼ B ⇔ |A| = |B|.
Theorem 3.17: A set A is countable if and only if it is fi-
nite or if A ∼ N. ((Re)Phrased: There is no cardinality level
between finite and countably infinite.)

Important Countable Sets
Theorem 3.18: The set {0, 1}∗ def=
{, 0, 1, 00, 01, 10, 11, 000, 001, ...} of finitte binary se-
quences is countable.
Proof: 1 at beginning - standard binary interpretation
Theorem 3.19: N×N(= N2) (set of ordered pairs of natural
numbers) is countable.
Proof: k + m = t − 1, m = n −

t
2

, t > 0 (diagonals, bot

to top)
Corollary 3.20: The Cartesian product A×B of two count-
able sets A and B is countable: A ≼ N ∧ B ≼ N ⇒
A × B ≼ N.
Corollary 3.21: The rational numbers Q are countable.
Theorem 3.22: A and Ai for i ∈ N be countable sets.

• For any n ∈ N, the set An of n-tuples over A is
countable.

• The union

i∈N Ai of a countable list A0, A1, ... of
countable sets is countable.

• The set A∗ of finite sequences of elements from A is
countable.

Uncountability of {0, 1}∞

Definition 3.43: {0, 1}∞ set of semi-infinite binary se-
quences (or, equivalencly, the set of functions N → {0, 1}.
Theorem 3.23: The set {0, 1}∗ is uncountable.
Proof by Cantor’s diagonalization argument.
Also note generally: N ≺ {0, 1}∞ ∼ R ∼ R×R ≺ P(R).

Existence of Uncomputable Functions
Definition 3.44: A function f : N → {0, 1} is called com-
putable if there is a program that, for every n ∈ N, when
given n as input, outputs f(n).

Corollary 3.24: There are uncomputable function N →
{0, 1}.
One program: One function at most. Uncountably many
functions. Only countably many programs (finite bit-strings).
Halting problem: Program with program as input. Uncom-
putable, whether terminates

number theory

introduction
Mathematical theory of the natural numbers. Integers are in-
formally considered here. A formal treatment is beyond the
scope of this course.

divisors and division
Divisors

Definition 4.1: For integers a and b we say that a divides b,
denoted a|b, if there exists an integer c such that b = ac. In
this case, a is called a divisor or b, and b is called a multiple
of a. If a ∕= 0 and a divisor exists, c is called the quotient
when b is divided by a, and we write c = b

a
or c = b/a. We

write a ∕ |b if a does not divide b.
Division with Remainders

Theorem 4.1 - Euclid: For all integers a and d ∕= 0 there
exist unique integers q and r satisfying a = dq + r and
0 ≤ r < |d|.
a: dividend, d: divisor, q: quotient, r(= Rd(a) = a
mod d): remainder

Gretest Common Divisors
Definition 4.2: For integers a and b (not both 0), an integer
d is called a greatest common divisor of a and b if d divides
both a and b and if every common divisor of a and b divides
d: d|a ∧ d|b ∧ ∀c((c|a ∧ c|b) → c|d).
For integers two ggd: ±. For other rings more.
Definition 4.3: For a, b ∈ Z (not both 0) one denotes
the unique positive greatest common divisor by gcd(a, b).
If gcd(a, b) = 1, then a and b are relatively prime (teiler-
fremd).
Lemma 4.2: For any integers , mn, q we have gcd(m, n −
qm) = gcd(m, n).
Implies: gcd(m, Rm(n)) = gcd(m, n) → Euclid’s gcd-
algorithm.
Definition 4.4: For a, b ∈ Z, the ideal generated by a and
b, denoted (a, b), is the set (a, b) := {ua + vb|u, v ∈ Z}.
Similarly, the ideal generated by a single integer a is (a) :=
{ua|u ∈ Z}.
Lemma 4.3: For a, b ∈ Z there exists d ∈ Z such that
(a, b) = (d).
Lemma 4.4: Let a, b ∈ Z (not both 0). If (a, b) = (d),
then (d) is a greatest common divisor of a and b.
Corollary 4.5: For a, b ∈ Z (not both 0), there exist
u, v ∈ Z such that gcd(a, b) = ua + vb.
To determine u, v, consider extended Euclid’s algorithm for
gcd(a, b) (preferably) with a > b:

r0 = a, s0 = 1, t0 = 1
r1 = b, s1 = 0, t1 = 1

...

ri+1 = ri−1 − qiri(0 ≤ ri+1 < |ri|), (defining qi)
si+1 = si−1 − qisi, ti+1 = ti−1 + qiti

Stop, when rk+1 = 0: gcd(a, b) = rk = ask + btk .
Least Common Multiples

2

Definition 4.5: The least common multiple l of two posi-
tive integers a and b, denoted l = lcm(a, b), is the common
multiple of a and b which divides every common multiple of
a and b: a|l ∧ b|l ∧ ∀m((a|m ∧ b|m) → l|m).

factorization into primes

Not exam-relevant
some basic facts about primes

Not exam-relevant
congruences and modular arithmetics

Modular Congruences
Definition 4.8: For a, b, m ∈ Z with m ≥ 1, we say that a
is congruent to b modulo m if m divides a−b. We write a ≡
b(mod m) or simply a ≡m b: a ≡m b

def⇐⇒ m|(a − b).
Lemma 4.13: For any m ≥ 1, ≡m is an equivalence rela-
tion.
a ∕≡m b ⇒ a ∕= b.
Lemma 4.14: If a ≡m b and c ≡m d, then a+c ≡m b+d
and ac ≡m bd.
Corollary 4.15: Let f(x1, ..., xk) be a multip-variate poly-
nomial in k variables with integer coefficients, and let m ≥
1. If ai ≡m bi for 1 ≤ i ≤ k, then: f(a1, ..., ak) ≡m

f(b1, ..., bk).
Modular Arithmetic

m equivalence classes of ≡m: [0], [1], ..., [m − 1]. Each [a]
has a natural representative Rm(a) ∈ [a] in Zm.
Lemma 4.16: For any a, b, m ∈ Z with m ≥ 1: (i):
a ≡m Rm(a) & (ii): a ≡m b ⇔ Rm(a) = Rm(b).
Corollary 4.17: Let f(x1, ..., xk) be a multi-
variate polynomial in k variables with integer coeffi-
cients, and let m ≥ 1. Then Rm(f(a1, ..., ak)) =
Rm(f(Rm(a1), ..., Rm(ak))).

Multiplicative Inverses
Lemma 4.18: The congruence equation ax ≡m 1 has a so-
lution x ∈ Zm if and only if gcd(a, m) = 1. The solution
is unique.
Definition 4.9: If gcd(a, m) = 1, the unique solution
x ∈ Zm to the congruence equation ax ≡m 1 is called
the multiplicative inverse of a modulo m. One also uses the
notation x ≡m a−1 or x ≡m 1/a.
Consider: ax ≡m 1. We must have gcd(a, m) = 1.
Also, gcd(a, m) = ua + vm (extended Euclid. Alg.).
So, 1 ≡m ua + vm for some u, v: 1 ≡m ua. Thus,
Rm(u) = x.

The Chinese Remainder Theorem
Theorem 4.19: Let m1, m2, ..., mr be pairwise relatively
prime integers and let M =

r

i=1 mi. For every list
a1, ..., ar with 0 ≤ ai < mi for 1 ≤ i ≤ r, the system
of congruence equations

x ≡m1 a1
x ≡m2 a2

...
x ≡mr ar

for x has a unique solution x satisfying 0 ≤ x < M .
Diffie-Hellman Key-Agreement

Diffie and Hellman proposed public-key encryption in a sem-
inal 1976 paper. This solves the key distribution problem.
The security of the Diffie-Hellman protocol is based on the
asymetry in computation difficulty - it requires a one-way
function, which is easy to compute in one direction but com-
putationally very hard to invert. Specifically: y = Rp(gx)
with p a very large prime (2048 bits for example). y is esasily

computable even if p, g, x are very large numbers. Comput-
ing x when given p, g, y is generally (believed to be) compu-
tationally infeasible. The prime p and the basis g are public
parameters. The communicatino must be authenticated, but
not secret.

Algebra

introduction
Mathematical study of structures consting of a set and certain
operations on the set. Goal: understanding such algebraic
systems at the highest level of generality and abstraction.

Algebraic Structures
Definition 5.1: An operation on a set S is a function
Sn → S, where n ≥ 0 is called the ”arity” of the opera-
tion.
Operations with arity 1 and 2 are called unary and binary op-
erations, respectively. An operation with 0 arity is called a
constant.
Definition 5.2: An algebra (or algebraic strucutre or Ω-
algebra) is a pair 〈S; Ω〉 where S is a set (the carrier of the
algebra) and Ω = (ω1, ..., ωn) is a list of operations on S.

monoids and groups
We consider one binary (and possible one unary and one
nullary) operation.

Neutral Element
Definition 5.3: A left [right] neutral element (or identity el-
ement) of an algebra 〈S; ∗〉 is an element e ∈ S such that
e ∗ a = a [a ∗ e = a] for all a ∈ S. If e ∗ a = a ∗ e = a
for all a ∈ S, then e is simply called neutral element.
Lemma 5.1: If 〈S; ∗〉 has both a left and a right neutral el-
ement, then they are equal. In particular 〈S; ∗〉 can have at
most one neutral element.

Associativity and Monoids
Definition 5.4: A binary operation ∗ on a set S is associative
if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S.
Addition and multiplication are associate operations in
Z,N,Q,R,Zm.
Definition 5.5: A monoid is an algebra 〈M ; ∗, e〉 where ∗
is associative and e is the neutral element.
Z,N,Q,R,Zm with addition (neutral element 0) and multi-
plication (neutral element 1) respectively are monoids.

Inverses and Groups
Definition 5.6: A left [right] inverse element of an element
a in an algebra 〈S; ∗, e〉 with neutral element e is an element
b ∈ S such that b ∗ a = e [a ∗ b = e]. If b ∗ a = a ∗ b = e,
then b is simply called an inverse of a.
Lemma 5.2: In a monoid 〈M ; ∗, e〉, if a ∈ M has a left
and a right inverse, then they are equal. In particular, a has
at most one inverse.
Definition 5.7: A group is an algebra 〈G; ∗,̂ , e〉 satisfying
the follwoing axioms:

1. ∗ is associative
2. e is a neutral element
3. Every a ∈ G has an inverse element â.

For addition (+): inverse −a, neutral element 0. For multi-
plication: inverse a−1 or 1/a, neutral element: 1.
We have 〈N; +〉, 〈Z; +〉, 〈Q; +〉, 〈Q\{0}; ·〉, 〈R; +〉,
〈R\{0}; ·〉, 〈Zm; ⊕〉.
Definition 5.8: A group 〈G; ∗〉 (or monoid) is called com-
mutative or abelian if a ∗ b = b ∗ a for all a, b ∈ G.
Lemma 5.3:

1. ˆ̂a = a
2. ˆa ∗ b = b̂ ∗ â
3. Left cancellation law: a ∗ b = a ∗ c ⇒ b = c
4. Right cancellation law: b ∗ a = c ∗ a ⇒ b = c
5. a ∗ x = b [x ∗ a = b] has a solution for any a and b

(Nonn)minimality of the Group Axioms
The above aximos may be simplified. Replace G2 with G2’
(a ∗ e = a) and G3 with G3’ (â ∗ a = e). Then, G1, G2’,
G3’ imply G2 and G3.

Some Examples of Groups
Examples irrelevant.

the structure of groups
Direct Products of Groups

Definition 5.9: The direct product of n groups 〈G1; ∗1〉, ...,
〈Gn; ∗n〉 is the algebra 〈G1 × G2 × ... × Gn; 〉, where the
operation is component wise: (a1, ..., an) (b1, ..., bn) =
(a1 ∗1 b1, ..., an ∗n bn).
Lemma 5.4: 〈G1 × ... × Gn; 〉 is a group, where the neu-
tral element and the inversion operation are component-wise
in the respective groups.

Group Homomorphisms
Definition 5.10: For two groups 〈G; ∗,̂ , e〉 and
〈H; , ∼, e′〉, a function ψ : G → H is called a group ho-
momorphism if, for all a and b, ψ(a∗b) = ψ(a)ψ(b). If ψ
is a bijection from G to H , then it is called an isomorphism,
and we say that G and H are isomorphic and write G ≃ H .
Lemma 5.5: A group homomorphism ψ from 〈G; ∗,̂ , e〉 to

〈H; , ∼, e′〉 satisfies (i) ψ(e) = e′ and (ii) ψ(â) =
∼

ψ(a)
for all a.

Subgroups
Definition 5.11: A subset H ⊆ G of a group 〈G; ∗,̂ , e〉 is
called a subgroup of G if 〈H; ∗,̂ , e〉 is a group, i.e., if H is
closed with respect to all operations: (1) a ∗ b ∈ H for all
a, b ∈ H , (2) e ∈ H , (3) â ∈ H for all a ∈ H .

The Order of Group Elements and of a Group
Definition 5.12: G a group. a ∈ G. The order of a, denoted
ord(a), is the least m ≥ 1 such that am = e, if such an m
exists, and ord(a) is said to be infinite otherwise, written
ord(a) = ∞.
If ord(a) = 2 for some a: a−1 = a. (self-inverse)
Lemma 5.6: In a finite group G, every element has a finite
order.
Definition 5.13: For a finite group G, |G| is called the order
of G.

Cyclic Groups
Definition 5.14: For a group G and a ∈ G, the group gen-

erated by a, denoted 〈a〉 is defined as 〈a〉 def= {an|n ∈ Z}.
〈a〉 is the smallest subgroup of G containing a ∈ G.
Definition 5.15: A group G = 〈g〉 generated by an element
g ∈ G is called cyclic, and g is called a generator of G.
There may be multiple generators. g−1 is always a generator
too.
Theorem 5.7: A cyclic group of order n is isomorphic to
〈Zn; ⊕〉 (and hence abelian).

Application: Diffie-Hellman for General Groups
Was described before for Z∗

p (for notation see below). Works
as well in any cyclic group G = 〈g〉 for which computing x
from gx is computationally infeasible.
Also, elliptic curves are an important class of cyclic groups
used in cryptography.

The Order of Subgroups
Theorem 5.8 - Lagrange: Let G be a finite group and let H
be a subgroup of G. Then the order of H divides the order
of G.
Corollary 5.9: For a finite group G, the order of every el-
ement divides the group order, i.e., ord(a) divides |G| for
every a ∈ G.
Corollary 5.10: Let G be a finite group. Then a|G| = e for
every a ∈ G.
Corollary 5.11: Every group of prime order is cyclic, and
in such a group every element except the neutral element is a
generator.

The Group Z∗
m and Euler’s Function

Definition 5.16: Z∗
m

def= {a ∈ Zm|gcd(a, m) = 1}.
That so that we have a group. Because a ∈ Zm has a multi-
plicative inverse if and only if gcd(a, m) = 1.
Definition 5.17: The Euler function ϕ : Z+ → Z+ is de-
fined as the cardinality of Z∗

m: ϕ(m) = |Z∗
m|.

If p is prime: Z∗
p = {1, ..., p − 1} = Zp\{0}. Hence,

ϕ(p) = p − 1.
Lemma 5.12: If the prime factorization of m is m =r

i=1 pei

i , then ϕ(m) =
r

i=1(pi − 1)pei−1
i .

Theorem 5.13: 〈Z∗
m; ⊙, −1, 1〉 is a group.

Corollary 5.14 - Fermat, Euler: For all m ≥ 2 and all a
with gcd(a, m) = 1: aϕ(m) ≡m 1. In particular, for every
prime p and every a not divisible by p: ap−1 ≡p 1.
Theorem 5.15: The group Z∗

m is cyclic if and only if
m = 2, m = 4, m = pe, m = 2pe, where p is an odd
prime and e ≥ 1.

RSA public-key encryption
e-th Roots in a Group

Theorem 5.16: G some finite group. e ∈ Z relatively prime
to |G|. The function x → xe is a bijection and the (unique)
e-th root of y ∈ G, namely x ∈ G satisfying xe = y is
x = yd where d is the multiplicative inverse of e modulo
|G|: ed ≡|G| 1.
|G| known, d computable from ed ≡|G| 1 with the extended
Euclidean algorithm. No general method is known for com-
puting e-th roots in a group G without knowing its order.

Description of RSA
We consider Z∗

n with n = pq, p and q being two suffieciently
large secret primes. Then: |Z∗

n| = ϕ(n) = (p − 1)(q − 1).
The order can only be managably computed if the (secret)
prime factors p and q of n are known.

3

The (public) encryption transformation is defined by m →
y = Rn(me). The (secret) decryption transformation is de-
fined by y → m = Rn(yd). d can be computed according
to ed ≡(p−1)(q−1) 1.
That is the naive approach (being deterministic etc.). The
message m is usually a short-term encryption key.

On the Security of RSA
First, it is widely believed that computing e-th roots modulo
n is computationally equivalent to factoring n/large integerns
- but not definitely known. Without a major breakthrough and
processor speed developing as predicted, a 2048-bit modulus
seems secure for another 15 years. Larger modulo are secure
much longer.
Note that RSA is only (believed to be) secure if the communi-
cation channel is authenticated. If an adversary can interfere
with the data traffic, it can just provide its own keys to both
parties and ’mediate’ to listen. This is usually solved with
publick-key certificates signed by a trusted authority.
Also, the message must be randomized for RSA to be secure.
Otherwise, an adversary could simply encrypt messages it-
self and comparing them with the encrypted messages. For a
small message space this allows to break the system.

Digital Signatures
Signature can only be created by the entity knowing the se-
crt key. Can be verified by anyone knowing the public key.
Message: m. z = m||h(m) (h introduces redundancy),
z ∈ Zn. Signature s = Rn(zd). Verification: checking
Rn(se) = m||h(m).

rings and fields
Now: two binary operations, usually called addition and mul-
tiplication.

Definition of a Ring
Definition 5.18: A ring 〈R; +, −, 0, ·, 1〉 is an algebra for
which

1. 〈R; +, −, 0〉 is a commutative group
2. 〈R; ·, 1〉 is a monoid
3. a(b + c) = (ab) + (ac) and (b + c)a = (ba) + (ca)

for all a, b, c ∈ R.

Commutative ring: multiplication is commutative (ab = ba).
Lemma 5.17: For any ring 〈R; +, −, 0, ·, 1〉, and for all
a, b ∈ R:

1. 0a = a0 = 0
2. (−a)b = −(ab)
3. (−a)(−b) = ab
4. R non-trivial ⇒ 1 ∕= 0

Definition 5.19: The characteristic of a ring is the order of
1 in he additive group if it is finite, and otherwise the charac-
teristic is defined to be 0 (not infinite).

Unts and the Multiplicative Group of a Ring
Definition 5.20: An element u of a ring R is called a unit if
u is invertible: uv = vu = 1 for some v ∈ R. The set of
units of R is denoted by R∗.
Lemma 5.18: For a ring R, R∗ is a multiplicative group
(the group of units of R).

Divisors
Definition 5.21: For a, b ∈ R with a ∕= 0 we say that a di-
vides b, denoted a|b, if there exists c ∈ R such that b = ac.
In this case, a is called a divisors of b and b is called a multi-
ple of a.
All non-zero elements divise 0. 1/−1 divise every element.
Lemma 5.19: In any commutative ring:

• a|b and b|c ⇒ a|c (transitivity of |)
• a|b ⇒ a|bc for all c

• a|b and a|c ⇒ a|(b + c)

Definition 5.22: For ring elements a and b (not both 0), a
ring element d is called a greatest common divisor of a and
b if d divides both a and b and if every common divisor of a
and b divides d: d|a ∧ d|b ∧ ∀c((c|a ∧ c|b) → c|d).

Zeordivisors and Integral Domains
Definition 5.23: An element a ∕= 0 of a commutative ring
R is called a zerodivisor if ab = 0 for some b ∕= 0 in R.
Definition 5.24: An integral domain is a (nontrivial, 1 ∕= 0)
commutative ring without zerodivisors: ∀a∀b(ab = 0 →
a = 0 ∨ b = 0).
Lemma 5.20: In an integral domain, if a|b, then c with
b = ac is unique (denoted c = b

a
or c = b/a and called

quotient)
Polynomial Rings

Definition 5.25: A polynomial a(x) over a commutative
ring R in the indeterminate x is a formal expression of the
form a(x) = adxd + ad−1xd−1 + ... + a1x + a0 =d

i=0 aixi for some non-negative integer d, with ai ∈ R.
The degree of a(x), denoted deg(a(x)), is the greatest i for
which ai ∕= 0. The special polynomial 0 is defined to have
degree ”minus infinity”. Let R[x] denote the set of polyno-
mials (ni x) over R.
Actually better to understand polynomials as finite lists
(a0, a1, ..., ad−1, ad). Addition: a(x) + b(x) =max(d,d′)

i=0 (ai + bi)xi. Multiplication: as usual. Degree
of product at most sum of degrees. If R integral domain,
exactly sum.
Theorem 5.21: For any commutative ring R, R[x] is a com-
mutative ring.
Lemma 5.22: (i) If D is an integral domain, then so is D[x].
(ii) The units of D[x] are the constant polynomials that are
units of D: D[x]∗ = D∗.

Fields
Definition 5.26: A field is a nontrivial commutative ring F
in which every nonzero element is a unit. (F ∗ = F \{0}).
F is a field if and only if 〈F \{0}; ·, −1, 1〉 is an abelian
group.
Theorem 5.23: Zp is a field if and only if p is prime.
Theorem 5.24: A field is an integral domain.

polynomials over a field
F field. F [x] ring. - as F commutative, also F [x] commu-
tative.

Factorization and Irreducible Polynomials
Definition 5.27: A polynomial a(x) ∈ F [x] is called monic
if the leadin coefficient is 1.
Definition 5.28: A polynomial a(x) ∈ F [x] with degree at
least 1 is called irreducible if it is divisible only by constant
polynomials and by constant multiples of a(x).

• Polynomial of degree 1: always irreducible.
• Polynomial of degree 2: irreducible of product of two

polynomials of degree 1.
• Polynomial of degree 3: irreducible or at least one

factor of degree 1.
• Polynomial of degree 4: irreducible or a factor of de-

gree 1 or an irreducible factor of degree 2.

Definition 5.29: The monic polynomial g(x) of largest de-
gree such that g(x)|a(x) and g(x)|b(x) is called the greatest
common divisor of a(x) and b(x), denoted gcd(a(x), b(x)).

The Division Property in F [x]
Theorem 5.25: F a field. For any a(x) and b(x) ∕= 0 in
F [x] there exists a unique q(x) (the quotient) and a unique

r(x) (the remainder) such that a(x) = b(x) · q(x) + r(x)
and deg(r(x)) < deg(b(x)).
r(x) denoted by Rb(x)(a(x)).
Analogies Between Z and F [x], Euclidean Domains

Not exam relevant!
Definition 5.30: In an integral domain, a and b are called
associates (a ∼ b) if a = ub for some unit u.
Definition 5.31: In an integral domain, a non-unit p ∈
D\{0} is irreducible if, whenever p = ab, then either a
or b is a unit. (p only divisible by units/associates)
Units in Z: 1, −1. Units in F [x]: non-zero constant polyno-
mials.
a ∈ D on associate distinguished. For Z : |a|. For
a(x) ∈ F [x]: monic polynomial associated with a(x). Only
considering distinguished associates for Z: usual notion of
primes.
Lemma 5.26: a ∼ b ⇔ a|b ∧ b|a
Definition 5.32: A Euclidean domain is an integral domain
D together with a so-called degree function d: D\{0} → N
such that:

1. For every a and b ∕= 0 in D: exists q, r such that
a = bq + r and d(r) < d(b) or r = 0.

2. For all nonzero a, b ∈ D: d(a) ≤ d(ab).

Z[i] (Gaussian integers) are Euclidean domain with absolte
value as degree.
Theorem 5.27: In a Euclidean domain every element can be
factored uniquely (up to taking associates) into irreducible
elements.

Polynomials as Functions
Polynomial Evaluation

For a ring R, a(x) ∈ R[x] can be interpreted as a function
R → R by defining evaluation of a(x) at α ∈ R in the usual
manner. This defines R → R : α → a(α).
Lemma 5.28: Polynomial evaluation is compatible with the
ring operations:

• c(x) = a(x) + b(x) ⇒ c(α) = a(α) + b(α) for
any α

• c(x) = a(x) · b(x) ⇒ c(α) = a(α) · b(α) for any
α

Roots
Definition 5.33: Let a(x) ∈ R[x]. An element α ∈ R for
which a(α) = 0 is called a root of a(x).
Lemma 5.29: For a field F , α ∈ F is a root of a(x) if and
only if x − α divides a(x).
Corollary 5.30: A polynomial a(x) of degree 2 or 3 over a
field F is irreducible if and only if it has no roots.
Theorem 5.31: For a field F , a nonzero polynomial a(x) ∈
F [x] of degree d has at most d roots.

Polynomial Interpolation
Lemma 5.32: A polynomial a(x) ∈ F [x] of degree at most
d is uniquely determined by any d + 1 values of a(x).

finite fields
The Ring F [x]m(x)

a(x) ≡m(x) b(x) def⇐⇒ m(x)|(a(x) − b(x))
Lemma 5.33: Congruence modulo m(x) is an equivalence
relation on F [x], and each equivalence class has a unique
representative of degree less than deg(m(x)).
Definition 5.34: Let m(x) be a polynomial of degree d over

F . Then F [x]m(x)
def= {a(x) ∈ F [x]|deg(a(x)) < d}.

Lemma 5.34: Let F be a finite field with q elements
and let m(x) be a polynomial of degree d over F . Then
|F [x]m(x)| = qd.

Lemma 5.35: F [x]m(x) is a ring with respect to addition
and multiplication modulo m(x).
Lemma 5.36: The congruence equation a(x)b(x) ≡m(x)=
1 (for a given a(x)) has a solution b(x) ∈ F [x]m(x)
if and only if gcd(a(x), m(x)) = 1. The solution
is unique. In other words, F [x]∗

m(x) = {a(x) ∈
F [x]m(x)|gcd(a(x), m(x)) = 1}.

Constructing Extension Fields
Theorem 5.37: The ring F [x]m(x) is a field if and only if
m(x) is irreducible.
One can show that Rm(x) is isomorphic to C for every irre-
ducible polynomial of degree 2 over R.
There are not irreducible polynomials of higher degree than
2 over R.
There are not irreducible polynomials of degree > 1 over C.

Some Facts About Finite Fields
Theorem 5.38: For every prime p and every d ≥ 1 there
exists an irreducible polynomial of degree d in GF (p)[x]. In
particular, there exists a finite field with pd elements.
Theorem 5.39: There exists a finite field with q elements if
and only if q is a power of a prime. Moreover, any two finite
fields of the same size q are isomorphic.
Theorem 5.40: The multiplicative group of every finite field
GF (q) is cyclic.
Multiplicative group of GF (q) has order q −1 and ϕ(q −1)
generators.

Application: Error-Correcting Codes
On application of finite fields in CS.

Definition of Error-Correcting Codes
Two problems: erased data & errors in data. Second more
severe as unkonwn.
Definition 5.35: A (n, k)-encoding function E for
some alphabet A is an injective function that maps a list
(a0, ..., ak−1) ∈ Ak of k (information) symbols to a list
(c0, ..., cn−1) ∈ An of n > k (encoded) symbols in A,
called codeword: E : Ak → An : (a0, ..., ak−1) →
E((a0, ..., ak−1)) = (c0, ..., cn−1).
C = Im(e) = {E((a0, ..., ak−1))|a0, ..., ak−1 ∈ A} is
called an error-correcting code.
Definition 5.36: An (n, k)-error-correcting code over the
alphabet A with |A| = q is a subset of An of cardinality qk .
Definition 5.37: The Hamming distance between two
strings of equal length over a finite alphabet A is the number
of positions at which two strings differ.
Definition 5.38: The minimum distance of an error-
correcting code C, denoted dmin(C), is the minimum of the
Hamming distance between any two codewords.

Decoding
Definition 5.39: A decoding function D for an (n, k)-
encoding function is a function D : An → Ak .
Such a function (should be efficiently computable) takes an
arbitrary list (r0, ..., rn−1) ∈ An and decodes it to the most
plausible information vectors (a0, ..., ak−1).
Definition 5.40: A decoding function D is t-error cor-
recting for encoding function E if for any (a0, ..., ak−1):
D((r0, ..., rn−1)) = (a0, ..., ak−1) for any (r0, ..., rn−1)
with Hamming distance at most t from E((a0, ..., ak−1)).
A code C is t-error correcting if there exists E and D with
C = Im(E) where D is t-error correcting.
Theorem 5.41: A code C with minimum distance d is t-
error correcting if and only if d ≥ 2t + 1.

Codes based on Polynomial Evaluation
Theorem 5.42: Let A = GF (q) and let α0, ..., αn−1 be
arbitrary distinct elements of GF (q). Consider the encod-
ing function E((a0, ..., ak−1)) = (a(α0), ..., a(αn − 1)),

4

where a(x) is the polynomial a(x) = ak−1xk−1 + ... +
a1x + a0. This code has minimum distance n − k + 1.
An (n, k)-code over GF (2d) can be interpreted as a binary
(dn, dk)-code over GF (2). Minimum distance of the binary
code ≥ original code.

Logic

introduction
Not relevant.

proof systems
Definition

Syntactic objects defined as finite strings over some alphabet.
Alphabet Σ. Σ∗ set of finite strings over Σ.
Consider statements of certain type & proofs of statements
for this type.
Now, fixed statement type. S ⊆ Σ∗, set of syntactic repre-
sentations of mathematical statements of that type. P ⊆ Σ∗,
set of syntactic representations of proof strings.
τ : S → {0, 1} Truth function assigns truth value. Defines
semantics.
Proof p ∈ P either valid or invalud for some s ∈ S:
φ : S × P → {0, 1} (1 meaning valid proof for s).
Without loss of generality one can consider S = P =
{0, 1}∗. With syntactically wrong statements as false state-
ments.
Definition 6.1: A proof system is a quadruple Π =
(S, P, τ, φ).
φ has to be efficiently computable for Π to be of any use.
Definition 6.2: A proof system Π is sound if not false state-
ment has a proof: for all s ∈ S: if φ(s, p) = 1 for some
p ∈ P ⇒ τ(s) = 1.
Definition 6.3: A proof system Π is complete if every true
statement has a proof: for all s ∈ S with τ(s) = 1 ⇒ p ∈ P
with φ(s, p) = 1 exists.

Examples
A proof system with efficient verification for the existence of
Hamiltonian cycles in graphs exists - just providing a cycle.
However, no reaonable sound and complete proof system for
the non-existence of Hamiltonian cycles is known to exists.
Now, consider primality. For some number not be be prime,
a simple (verifiable) proof is providing a non-trivial divisor.
Proving that some number is prime, however, is harder. A
proof consists of (1) p1, ..., pk distinct prime factors of n−1,
(2) recursive proof of primality for each p1, ..., pk , (3) a gen-
erator g of the group Z∗

p. For understanding remember that
the multiplicative group of any finite field is cyclic and has a
generator g.

Discussion

• Proof verification must be efficient. Proof generation
generally is not efficient. Requires ingenuity and in-
sight.

• A proof system is always restricted to a certain type
of mathematical statement.

• The proof verification method of logic (checking a
sequence of rule applications) is only a special case.

• Existence of proof system for certain statement type
does not imply existence for negated statement (at
least with efficient verification)

Proof Systems in Theoretical Computer Science
S = P = {0, 1}∗. L ⊆ {0, 1}∗ with L := {s|τ(s) = 1}.
Hence, L also defines predicate τ .
L: formal language. Problem: prove that s in language:
s ∈ L. Proof for s ∈ L: witness w.

Consider W bounded by plynomial in the length of s & φ
computable in polynomial time in the length of s. NP: Class
of languages for which such a polynomial-time computable
verification function exists.
Proof system of interest: probabilistically checkable proofs
Interactive proofs: Proof is a protocol/interaction between
prover / verifier. Accepts exponentially small probability of
verifier accepting proof for a flase statement. Justification

• statements provable, not provable conventionally
• zero-knowledge proofs (verifier can not proof itself)
• relevance for block-chain systems etc.

elementary general concepts in logic
The General Goal of Logic

A goal of logic is to provide a specific proof system Π for
which a very large class of matheamtical statements can be
expressed as an element of S.
Never, all possible math. statements included. Self-
referential statements usually not allowed.
s ∈ S consiste of one or more formulas. Proof: sequence of
syntactic steps, called derivation or a deduction (step: apply-
ing one allowed role). Set of all allowed rules: Calculus.

Syntax, Semantics, Interpretaion, Model
Definition 6.4: The syntax of a logic defines an alphabet
Λ (of allowed symbols) and specifies which strings Λ∗ are
formulas.
Definition 6.5: The semantics of a logic defines (among
other things, see below) a function free which assigns
to each formula F = (f1, f2, ..., fk) ∈ Λ∗ a subset
free(F) ⊆ {1, ..., k} of the indices. If i ∈ free(F), then
the symbol fi is said to occur free in F .
Definition 6.6: An interpretation consists of a set Z ⊆ Λ
of symbols of Λ, a domain (a set of possible values) for each
symbol in Z , and a function that assigns to each symbol in
Z a value in its associated domain.
Definition 6.7: An interpretaion is suitable for a formula F
if it assigns a value to all symbols β ∈ Λ occuring free in F .
Definition 6.8: The semantics of a logic also defines a func-
tion σ assigning to each formula F , and each interpretation
A suitable for F , a truth value σ(F, A) in {0, 1}. In threat-
ments of logic one often writes A(F), which is called the
truth value of F under interpretation A.
Definition 6.9: A (suitable) interpretation A for which a
formula F is true is called a model for F , and one also write
A |= F . For a set M of formulas, a (suitable) interpretation
for which all formulas in M are true is called a model for M ,
denoted A |= M .

Connection to Proof Systems
Often logic is treated informally, but there are two options to
foramlize logic:

• Formulas and interpretations are formas objects. A
statement is a pair (F, A). Then, σ corresponds to τ .

• Formulas are formal objects. Statements only refer
to general formula (tautology, (un)satisfiable, logical
consequence, ...). Foramlization of interpretations is
not necessary. (Usual approach, also here.)

Satisfiability, Taugology, Consequence, Equivalence
Definition 6.10: A formula F (or a st M of formulas) is
called satisfiable if there exists a model for F (or M), and
unsatisfiable otherwise. ⊥ is used for unsatisfiable formulas.
Definition 6.11: A formula F is called a tautology or valid
if it is true for every suitable interpretaiton. ⊤ is used for a
tautology.
Definition 6.12: A formula G is a logical consequence
of a formula F (or a set of formulas), denoted F |= G or

M |= G if every interpretation suitable for both F (or M)
and G, which is is a model for F (for M), is a model for G.

Definition 2.7: F |= G
def⇐⇒ all suitable truth assignments

to symbols in F, G: value of G must be 1 if value of F is 1.
Definition 6.13: Two formulas F and G are equivalent
(F ≡ G), if every interpretation suitable for both F and

G yields the same truth value for F and G: F ≡ G
def⇐⇒

F |= G and G |= F .
Definition 2.6: In propositional logic, formulas F ≡ G if
same function (truth values equal for all truth assignments).
The empty set M correcponds to a tautology.
Definition 6.14: If F is a tautology, one also writes |= F .

The Logical Operators ∧, ∨, and ¬
Definition 6.15: If F and G are formulas, then also ¬F ,
(F ∧ G) (conjunction), and (F ∨ G) (disjunction) are for-
mulas.
Outermost parentheses and parentheses not needed because
of associativity can be dropped. F → G stands for ¬F ∨ G.
F ↔ G stands for (F ∧ G) ∨ (¬F ∧ ¬G).
Definition 6.16:

• A(F ∧ G) = 1 def⇐⇒ A(F) = 1 and A(G) = 1
• A(F ∨ G) = 1 def⇐⇒ A(F) = 1 or A(G) = 1
• A(¬F) = 1 def⇐⇒ A(F) = 0

Lemma 6.1: For any formulas F, G, H:

1. F ∧ F ≡ F and F ∨ F ≡ F (idempotence)
2. F ∧G ≡ G∧F and F ∨G ≡ G∨F (commutativity)
3. (F ∧ G) ∧ H ≡ F ∧ (G ∧ H) and (F ∨ G) ∨ H ≡

F ∨ (G ∨ H) (associativity)
4. F ∧(F ∨G) ≡ F and F ∨(F ∧G) ≡ F (absorption)
5. F ∧ (G ∨ H) ≡ (F ∧ G) ∨ (F ∧ H) (distributive

law)
6. F ∨ (G ∧ H) ≡ (F ∨ G) ∧ (F ∨ H) (distributive

law)
7. ¬¬F ≡ F (double negation)
8. ¬(F ∧ G) ≡ ¬F ∨ ¬G and ¬(F ∨ G) ≡ ¬F ∧ ¬G

(de Morgan’s rule)
9. F ∨ ⊤ ≡ ⊤ and F ∧ ⊤ ≡ F (tautology rules)

10. F ∨ ⊥ ≡ F and F ∧ ⊥ ≡ ⊥ (unsatisfiability rules)
11. F ∨ ¬F ≡ ⊤ and F ∧ ¬F ≡ ⊥

Logical Consequence vs. Unsatisfiability
Lemma 6.2 and 2.2: A formula F is a tautology if and only
if ¬F is unsatisfiable.
Lemma 6.3 and 2.3: The following three statements are
equivalent:

1. {F1, F2, ..., Fk} |= G
2. (F1 ∧ F2 ∧ ... ∧ Fk) → G is tautology
3. {F1, F2, ..., Fk, ¬G} is unsatisfiable

Theorem and Theories
Four types of statements.

1. Theorem in an axiomatically defined theory.
2. Statements about a formula/a set of formulas.
3. A |= F for a given interpretation A and formula F
4. Statements about a logic (calculus being sound, ...)

For the first: Set T of formulas, formulas called axioms of
the theory. Any F with T |= F called theorem in theory T .

Extension from Chapter 2
Formulas may be understood as functions. In function ta-
bles, one can describe (or define) the value of a formula for
all viable interpretations. The concept of function tables is

especially useful for propositional logic, where the domain
is finite.

logical calculi
Introduction

Proof of a theorem should be a puely syntactic derivation
consisting of simple and easily verifiable steps. Step: Deriva-
tion of new syntactic object by application of a deriva-
tion/inference rule.
Set of rules for manipulation formulas: Calculus.

Hilbert-Style Calculi
Most intuitive type of calculus: Formulas are manipulated.
Definition 6.17: A derivation/inference rule is a rule
fo rderiving a formula from a set of formulas (precondi-
tion/premises). We write {F1, ..., Fk} ⊢R G if G can be
derived from the set {F1, ..., Fk} by rule R.
Derivation purely syntactic concept.
Definition 6.18: The application of a derivation rule R to a
set M of formulas means:

1. Select a subset N of M .
2. For the place-holders in R: specify formulas that ap-

pear in N such that N ⊢R G for a formula G.
3. Add G to the set M (M ∪ {G}).

Definition 6.19: A (logical) calculus K is a finite ste of
derivation rules: K = {R1, ..., Rm}.
Definition 6.20: A derivation of a formula G from a set
M offormulas in a calculus K is a finite sequence (of some
length n) of applications of rules in K, leading to G. More
precisely, we have

• M0 := M
• Mi := Mi−1 ∪ {Gi} for 1 ≤ i ≤ n, where

N ⊢Rj
Gi for some N ⊆ Mi−1 and some Rj ∈ K,

and where
• Gn = G

We write M ⊢K G if a derivation of G from M exists in K.
Soundness and Completeness of a Calculus

Definition 6.21: A derivation rule R is correct if for every
set M of formulas and every formula F : M ⊢F ⇒ M |= F .
Definition 6.22: A calculus K is sound/correct if for ev-
ery set M of formuals and every formula F : M ⊢K F ⇒
M |= F . And K is complete if for every M and F :
M |= F ⇒ M ⊢K F .
K is sound and complete if M ⊢K F ⇔ M |= F .

Derivation from Assumptions
Lemma 6.4: If {F1, ..., Fk} ⊢K G holds for a sound cal-
culus, then: |= ((F1 ∧ ... ∧ Fk) → G).
For a given calculus one can also prove new derivation rules.
A proof pattern may be captured as a new rule.

connection to Proof Systems
Not relevant.

propositional logic
Syntax

Definition 6.23: An atomic formula is a symbol of the form
Ai with i ∈ N. A formula is defined as follows:

• An atomic formula is a formula.
• F and G formulas ⇒ ¬F , (F ∧ G), (F ∨ G) are

formulas

Semantics
In propositional logic, the free symbols of a formula are all
the atomic formulas.
Definition 6.24: For a set Z of atomic formulas, an in-
terpretation A (called truth assignment) is a function A :
Z → {0, 1}. A is suitable for F if Z contains all atomic
formulas appearing in F . The sematntics is defined by
A(F) = A(Ai) for any atomic formula F = Ai and:

5

• A((F ∧ G)) = 1 def⇐⇒ A(F) = 1 and A(G) = 1
• A((F ∨ G)) = 1 def⇐⇒ A(F) = 1 or A(G) = 1
• A(¬F) = 1 def⇐⇒ A(F) = 0

Normal Forms
Definition 6.25: A literal is an atomic formula or the negatio
of an atomic formula.
Definition 6.26: A formula F is in conjunctive normal form
(CNF) if it is a conjunction of disjunctions of liters, i.e., if it is
of the form F = (L11∨...∨L1m1)∧...∧(Fn1∨...∨Lnmn)
for some literals Lij .
Definition 6.27: A formula F is in disjunctive normal form
(DNF) if it is a disjunction of conjunctions of literals, i.e., if
it is of the form F = (L11 ∧ ... ∧ L1m1) ∨ ... ∨ (Ln1 ∧ ... ∧
Lnmn).
Theorem 6.5: Every formula is equivalent to a formula in
CNF to a formula in DNF.

Some Derivation Rules
Not a calculus, just some rules. All equivalences (Lemma 6.1
and more) can be stated as rules: ¬¬F ⊢ F , F ∧G ⊢ G∧F ,
¬(F ∨ G) ⊢ ¬F ∧ ¬G. Furthermore:

• F ∧ G ⊢ F and F ∧ G ⊢ G
• {F, G} ⊢ F ∧ G
• F ⊢ F ∨ G and F ⊢ G ∨ F
• {F, F → G} ⊢ G
• {F ∨ G, F → H, G → H} ⊢ H

Also: ⊢ F ∨ ¬F and ⊢ ¬(F ↔ ¬F).
The Resolution Calculus for Propositional Logic

Used to prove unsatisfiability of a set M of formulas. Also
allows proofs of tautologies and logical consequences.
All formulas must be given in CNF. Work with equivalent
objects:
Definition 6.28: A clause is a set of literals.
Definition 6.29: The set of clauses associated to a
formula F = (L11 ∨ ... ∨ L1m1) ∧ ... ∧ (Ln1 ∨
... ∨ Lnmn) in CNF, denoted as K(F) is the set

K(F) def= {{L11, ..., L1m1 }, ..., {Ln1, ..., Lnmn }}. The
set of clauses associated with a set M = {F1, ..., Fk} of for-

mulas is the union of their clauses: K(M) def=
k

i=1 K(Fi).
Clause is satisfied by an interpretation if some literal evalu-
ates to true. Clauses stand for the disjunction of their liter-
als. K(M) is satisfied by an interpretation if every clause in
K(M) is satisfied by it. Sets of clauses stand for the con-
junction of their clauses.
Empty clause unsatisfiable. Empty set of clauses is tautology.
Definition 6.30: A clause K is resolvent of clauses K1 and
K2 if there is a literal L such that L ∈ K1, ¬L ∈ K2, and
K = (K1\{L}) ∪ (K2\{¬L}).
One can not perform two steps at once!
The resolution rule: {K1, K2} ⊢res K. The resolution cal-
culus: Res = {res}.
Lemma 6.6: Resolution calculus is sound: K ⊢Res K ⇒
K |= K.
Theorem 6.7: A set M of formulas is unsatisfiable if and
only if K(M) ⊢Res ∅.

predicate logic
Syntax

Definition 6.31:

• variable symbol is of the form xi with i ∈ N
• function symbol is of the form f

(k)
i with i, k ∈ N,

where k denotes the number of argumets of the func-
tion. k = 0: Constant.

• predicate symbol is of the form P
(k)
i with i, k ∈ N,

where k denotes the number of arguments of the
predicate.

• term is defined inductively: A variable is a term, and
if t1, ..., tk are terms, then f

(k)
i (t1, ..., tk) is a term.

k = 0: no parentheses
• formula is defined inductively:

– For any i and k, if t1, ..., tk are terms, then
P

(k)
i (t1, ..., tk) is a (atomic) formula.

– If F and G are formulas, then ¬F , (F ∧ G),
(F ∨ G) are formulas.

– If F is a formula, then, for any i, ∀xiF and
∃xiF are formulas.

∀ is the universal quantifier. ∃ is the existential quantifier.
One can depict such a formula as a tree. For function symbols
(f, g, h) number of arguments usually implicit. For pred-
icate symbols (P, Q, R) number of arguments usually im-
plicit. x, y, z, u, v, w, k, m, n as variable instead of xi.

Free Variables and Variable Substitution
Definition 6.32: Every occurrence of a variable in a formula
is either bound or free. If x occurs in a s(sub-)formula of the
form ∀xG or ∃xG, then it is bound - otherwise free. Formula
F is called closed if it contains no free variables.
Definition 6.33: Formula F , variable x, term t: F [x/t] de-
notes the formula obtained from F by substituting every free
occurrence of x by t.

Semantics
In predicate logic, the free symbols fo a formula are all pred-
icate symbols, all function symbols, and al occurrences of
free varialbes.
Definition 6.34: An interpretation or structure is a tuple
A = (U, φ, ψ, ζ), where

• U is a non-empty universe.
• φ is a function assigning to each function symbol (in

a certain subset of all function symbols) a function,
where for a k-ary function symbol f , φ(f) is a func-
tion Uk → U .

• ψ is a function assigning to each predicate symbol
(in a certain subset of all predicate symbols) a func-
tion, where for a k-ary predicate symbol P , ψ(P) is
a function Uk → {0, 1}. (implies definition 2.10)

• ζ is a function assigning to each variable symbol (in
a certain subset of all variable symbols) a value in U .

Notational convenience: fA instead of φ(f), P A instead of
ψ(P), xA instead of ζ(x), UA insetad of U .
Definition 6.35: An interpretation (structure) A is suitable
for a formula F if it defines all function symbols, predicate
symbols, and freely occuring variables of F .
Definition 6.36: For an interpretation A = (U, φ, ψ, ζ),
we define the value (in U) of terms and the truth value of
formulas under that structure.

• The value A(t) of a term t is defined recursively:

– If t is a variable (t = xi): A(t) = ζ(xi).
– If t is of the form f(t1, ..., tk) for term

t1, ..., tk and a k-ary function symbol f , then
A(t) = φ(f)(A(t1), ..., A(tk)).

• Teh truth value of a formula F is defined recursively
by Def. 6.16 and:

– If F is of the form F = P (t1, ..., tk) for
terms t1, ..., tk and a k-ary predicate symbol
P , then A(F) = ψ(P)(A(t1), ..., A(tk)).

– If F is of the form ∀xG or ∃xG, then A[x→u]
for some u ∈ U be the same structure as A
except that ζ(x) is overwritten by u:
A(∀xG) =

 1,A[x→U](G)=1 for all u∈U

0,else

A(∃xG) =
 1,A[x→U](G)=1 for some u∈U

0,else

This defines σ(F, A) of Def. 6.8.
Predicate Logic with Equality

= is usually not usually allowed. But one can extend the syn-
tax and semantics of predicate logic to include the equality
symbol ”=”.

Some Basic Equivalences Involving Quantifiers
Lemma 6.8: For any formulas F, G, H (x not free in H):

1. ¬(∀xF) ≡ ∃x¬F
2. ¬(∃xF) ≡ ∀x¬F
3. (∀xF) ∧ (∀xG) ≡ ∀x(F ∧ G)
4. (∃xF) ∨ (∃xG) ≡ ∃x(F ∨ G)
5. ∀x∀yF ≡ ∀y∀xF
6. ∃x∃yF ≡ ∃y∃xF
7. (∀xF) ∧ H ≡ ∀x(F ∧ H)
8. (∀xF) ∨ H ≡ ∀x(F ∨ H)
9. (∃xF) ∧ H ≡ ∃x(F ∧ H)

10. (∃xF) ∨ H ≡ ∃x(F ∨ H)

Useful rules (2.4.8):

• ∃x(P (x) ∧ Q(x)) |= ∃xP (x) ∧ ∃xQ(x)
• ∃y∀xP (x, y) |= ∀x∃yP (x, y)

Lemma 6.9: If one replaces a sub-formula G of a formula
F by an equivalent (to G) formula H , then the resulting for-
mula is equivalent to F .

Substitution of Bound Variables
Lemma 6.10: For a formula G in which y does not occur,
we have ∀xG ≡ ∀yG[x/y] and ∃xG ≡ ∃yG[x/y].
Definition 6.37: A formula in which no variable occurs both
as a bound and as a free variable and in which all variables
appearing after the quatifiers are distinct is said to be in rec-
tified form.
And formula can be expressed in rectified form.

Universal Instantiation
Lemma 6.11: For any formula F and any term t we have
∀xF |= F [x/t].

Normal Forms
Definition 6.38: A formula of the forrm
Q1x1 Q2x2 ... Qnxn G where Qi are arbitary quan-
tifiers and G is a formula free of quantifiers, is said to be in
prenex form.

Theorem 6.12: For every formula there is an equivalent
formula in prenex form.
For Skolem normal form one also removes all ∃ quantifiers.
Then, only equivalence regarding satisfiability is guaranteed.

An Example Theorem and its Interpretations
Theorem 6.13: ¬∃x∀y(P (y, x) ↔ ¬P (y, y)).
Corollary 6.14: There exists no set that contains all sets S
that do not contain themselves. (Russel’s paradox.)
Barber paradox
Corollary 6.15: The set {0, 1}∞ is uncountable.
Corollary 6.16: Tehre are uncomputable function N →
{0, 1}.
Corollary 6.17: The function N → {0, 1} assigning to each
y ∈ N the complement of what programm y outputs on input
y, is uncomputable.

beyond predicate logic
Predicate logic is naturally limited. For instance, ∀x∃y cor-
responds to the existence of a function f for all x. But in
predicatelogic we can not write ∃f .
Alternatively, in ∀w∀x∃y∃zP (w, x, y, z), y, z depend on
w, x. In predicate logic it can not be expressed that y may
only depend on w and z may only depend on x.

Addition

inverses mod m
mod 3: 2:2 mod 4: 3:3 mod 5: 2:3,4:4

mod 6: 5:5 mod 7: 2:4,3:5,6:6 mod 8: 3:3,5:5,7:7
mod 9: 2:5,3:3,4:7,8:8 mod 10: 3:7,9:9 mod 11:
2:6,3:4,5:9,7:8,10:10 mod 12: 5:5,7:7,11:11
mod 13: 2:7,3:9,4:10,5:8,6:11,12:12 mod 14:
3:5,9:11,13:13 mod 15: 2:8,4:4,7:13,11:11,14:14
mod 16: 3:11,5:13,7:7,9:9,16:16 mod 17:
2:9,3:6,4:13,5:7,8:15,10:12,11:14,16:16
mod 18: 5:11,7:13,17:17 mod 19:
2:10,3:13,4:5,6:16,7:11,8:12,9:17,14:15,18:18 mod 20:
3:7,9:9,11:11,13:17:19:19

irreducible polynomials
GF (2)[x]: 10, 11, 111, 1101, 10011, 11001, 11111, 100101,
101001, 101111, 110111, 111011, 111101, 1000011,
1001001, 1010111, 1011011, 1100001, 1100111, 1101101,
1110011, 1110101 GF (3)[x]: 10, 11, 12, 101, 112, 122,
1021, 1022, 1102, 1112, 1121, 1201, 1211, 1222, 10012,
10022, 10102, 10111, 10121, 10202, 11002, 11021, 111001,
11111, 11122, 11222, 12002, 12011, 12112, 12121, 12212
GF (4)[x]: 10, 11, 12, 13, 112, 113, 121, 122, 131, 133,
1002, 1003, 1011, 1021, 1031, 1101, 1112, 1113, 1123,
1132, 1201, 1213, 1222, 1232, 1233, 1301, 1312, 1322,
1323, 1333 GF (5)[x]: 10, 11, 12, 13, 14, 102, 103, 111,
112, 123, 124, 133, 134, 141, 142, 1011, 1014, 1021, 1024,
1032, 1033, 1042, 1043, 1101, 1102, 1113, 1114, 1131,
1134, 1141, 1143, 1201, 1203, 1213, 1214, 1222, 1223,
1242, 1244, 1302, 1304, 1311, 1312, 1322, 1323, 1341,
1343, 1403, 1404, 1411, 1412, 1431, 1434, 1442, 1444
GF (7)[x]: 10, 11, 12, 13, 14, 15, 16, 101, 102, 104, 113,
114, 116, 122, 123, 125, 131, 135, 136, 141, 145, 146, 152,
153, 155, 163, 164, 166
ad

6

