Mathematical Statements

The Concept of a Mathematical Statement Definition 2.1: A matheamtical statement (proposition) is a statement that is ture or false in an absolute, indisputable

Composition of Mathematical Statements
$\mathrm{d}^{\prime} b$: both, a, b, must be true for the composition
a 'and' b : both, a, b, must be true for the compo
true
$S \Rightarrow T$ (implication): If S is true, then T is true.
The Concept of a Proof The purpose of a proo is to demonstrate (or prove) a mathe-
The purpose of a proo is to demonstrate (
matical statement S Examples of Proofs
Claim: n is not prime $\Rightarrow 2^{n}-1$ is not prime.
Proof. $n=a b, a>1, a<n .2^{a b}-1=\left(2^{a}-\right.$ 1) $\sum_{i=0}^{b-1} 2^{i a}$

Examples of False Proofs

Not relevant for the exam, I guess
Two Meanings of \Longrightarrow
(a) composed statements $S \Rightarrow T$. (b) derivation step in proof. To avoid confusion, we use \doteq for (b). A standard proof pattern is a sequence of implications, each step denoted with \Longrightarrow. The justification must be clear stated in accompanying text/line remark (or implicitly).

Proofs Using Several Implications
To prove $S \Rightarrow T$, one might must do: $S \Longrightarrow S_{1}, S \Longrightarrow$ $S_{2}, S_{1} \Longrightarrow S_{3}, S_{1} \xlongequal{\Longrightarrow} S_{4}, S_{2} \Longrightarrow S_{5}, S_{3}$ and $S_{5} \Longrightarrow$ S_{6}, S_{1} and $S_{4} \xlongequal{\Longrightarrow} S_{7}, S_{6}$ and $S_{7} \underset{ }{\Longrightarrow} T$.
An Informal Understanding of the Proof Concept Definition 2.2 (informal): A proof of a statement S is a sequence of simple, easily verifiable, consecutive steps. The proof starts from a set of axioms (things postulated to be true) and known (previously proved) facts. Each step correspond to the application of a derivation rule to a few already prove statements, resulting in a newly proven statement, until the final step results in S.

Informal vs. Formal Proofs
Most proofs are quite informal. Benefits of formal proofs Prevention of errors, Proof complexity and automatic verification, Precision and deeper understanding. The border between informal/formal proofs is fluent and varies accross scientific fields.

Not relevant here.

The Role of Logic

Proof sketch/idea: Proofs in this Course spelled out in detail with explicit references to all definition Comp
Complete proof: use of every definition etc. explicit. Every step justified by stating the rule or definition applied.

Formal proof: Phrased in a given proof calculus.

A First Introduction to Propositional Logic Not relevant here, later in great detail

A First Introduction to Predicate Logic

Not relevant here, later in great detail

Logical Formulas vs. Mathematical Statement

 Not relevant here, later in great detail.
proof patterns

Composition of Implications
Definition 2.12: The proof step of composing implication is as follows: If $S \Rightarrow T$ and $T \Rightarrow U$ are both true, ther

Lemma 2.5: $(A \rightarrow B) \wedge(B \rightarrow C) \models A \rightarrow C$ Direct Proof of an Implication Definition 2.13: Direct proof of $S \Rightarrow T$: assuming S, proving T under that assumption.

Indirect Proof of an Implication

Definition 2.14: Indirect proof of $S \Rightarrow T$: assuming T is false, proving S is false under that assumption.
Lemma 2.6: $\neg B \rightarrow \neg A \models A \rightarrow B$
Modus Ponens
Definition 2.15: A proof of statement S by modus ponens:

1. Find a suitable mathematical statement R.
2. Prove $R \Rightarrow S$.

Lemma 2.7: $A \wedge(A \rightarrow B) \mid=B$
Definition 2.16: A proof Distinction (cases)
2. Prove that one of the R_{i} is always true (one case oc-
3. $\stackrel{\text { curs) }}{\text { Prove }} R_{i} \Rightarrow S$ for $i=1, \ldots, k$

Lemma 2.8: $\left(A_{1} \vee \ldots \vee A_{k}\right) \wedge\left(A_{1} \rightarrow B\right) \wedge \ldots \wedge\left(A_{k} \rightarrow\right.$
B) $\models B$

Proof by Contradiction

Definition 2.17: A proof by contradiction of statement S :

1. Find a suitable mathematical statement T.
. Prove that T is false. tion) that T is true (a contradiction.

Lemma 2.9: $(\neg A \rightarrow \neg B) \wedge \neg B \models A$

Existence Proofs

Definition 2.18: Consider a set \mathcal{X} of parameters and for each $x \in \mathcal{X}$ a statement denoted S_{x}. An existence proof is a proof of the statement that S_{x} is true for at least one $x \in \mathcal{X}$. An existence proof is constructive if it exhibits an a for which S_{a} is true, and otherwise it is non-constructive.

Existence Proofs vis the Pingeonhole Principle
Theorem 2.10: If a set of n objects is partitioned into $k<n$ sets, then at least one of these sets contains at least $\left\lceil\frac{n}{k}\right\rceil$ objects.

Proofs by Counterexample

Definition 2.19: Consider a set \mathcal{X} of parameters and for each $x \in \mathcal{X}$ a statement denoted S_{x}. A proof by counterexample is a proof of the statement that S_{x} is not true for all $S_{a} \in \mathcal{X}$, by

Definition:

Proofs by Induction

1. Base case: Prove $P(0)$.
2. Induction step: Prove that for any arbitrary n we have $P(n) \Rightarrow P(n+1)$
Theorem 2.11: universe \mathbb{N}, arbitrary unary predicate P : $P(0) \wedge \forall n(P(n) \rightarrow P(n+1)) \Rightarrow \forall n P(n)$.

sets, relations, functions

Definition 3.1 (informal): The number of elements of a finite set A is called its cardinality and is denoted $|A|$. Russell's Paradox

This shows flaws in Cantor's early definition of sets/set theory. Set theory was then based on more rigorous grounds Zermelo-Fraenkel (ZF) set theory most wiedely considered $\stackrel{\text { set of axioms. }}{R}=\{A \mid A \notin A\}$ - set of sets, which are not elements of themselves. Zermelo's aximoatization: Fo rany set B and predicate $P:\{x \in B \mid P(x)\}$ is a set, $P:\{x \mid P(x)\}$ is not a
set. \quad sets and operations on sets
The Set Concept
Universe of possible sets. Universe of objects (may be elements of sets). Both universes may be the same.
Binary predicate $E: E(x, y)=1 \stackrel{\text { def }}{\Longleftrightarrow} x$ is an element of y
Set Equality and Constructing Sets From Sets
Definition 3.2 - axiom of extensionality: $\quad A=B \stackrel{\text { def }}{\Longleftrightarrow}$ $\forall x(x \in A \leftrightarrow x \in B)$
a is a set. Then, the set $\{a\}$ exists
For finite liste of sets a, b, c, \ldots Then, the set $\{a, b, c, \ldots\}$ exists. $\mathbf{L e m m a}$ 3.1: For any (sets) a and $b,\{a\}=\{b\} \Rightarrow a=b$. If cardinality >1, this does not hold. But we may considere ordered lists of objects, then this still holds. An (ordered) list of k objects a_{1}, \ldots, a_{k} is denoted $\left(a_{1}, \ldots, a_{k}\right)$. Two lists of same length are equal if they agree in every component.
Definition 3.3: A set A is a subset of the set B, denoted $A \subseteq B$, if every element of A is also an element of B $A \subseteq B \stackrel{\text { def }}{\Longleftrightarrow} \forall x(x \in A \rightarrow x \in B)$.
Lemma 3.2: $A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A)$
Lemma 3.3: For any sets $A, B, C: A \subseteq B \wedge B \subseteq C \Rightarrow$ $A \subseteq C$.

Union and Intersection

Definition 3.4: The union of two sets A and B is defined as $A \cup B \stackrel{\text { der }}{=}\{x \mid x \in A \vee x \in B\}$. And their intersection is defined as $A \cap B \stackrel{\text { def }}{=}\{x \mid x \in A \wedge x \in B\}$.
\mathcal{A} non-empty set of sets. $\bigcup \mathcal{A} \stackrel{\text { def }}{=}\{x \mid x \in A$ for some $A \in$ \mathcal{A}. Analogous for \cap.
Definition 3.5: The difference of sets B and A, denoted $B \backslash A$ is the set of elements of B without those that are ele ments of $A: B \backslash A \stackrel{\text { def }}{=}\{x \in B \mid x \notin A\}$.
Theorem 3.4:

- $A \cap A=A$ and $A \cup A=A$ (idempotence)
- $A \cap B=B \cap A$ and $A \cup B=B \cup A$ (commutativity)
- $A \cap(B \cap C)=(A \cap B) \cap C$ and $A \cup(B \cup C)=$ $(A \cup B) \cup C$ (associativity)
- $A \cap(A \cup B)=A$ and $A \cup(A \cap B)=A$ (absorption)
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (distributivity)
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (distributivity)
- $A \subseteq B \Leftrightarrow A \cap B=A \Leftrightarrow A \cup B=B$ (consistency)

The Empty Set

Definition 3.6: Set A is called empty if it contains not ele ments. $\forall x \neg(x \in A)$
Lemma 3.5: There is only one empty set (which is often denoted as \varnothing or $\}$).
Lemma 3.6: The empty set is a subset of every set, i.e. $\forall A(\varnothing \subseteq A)$.

Constructing Sets from the Empty Set
Note that $\{\varnothing\} \neq \varnothing$. We may construct various sets from \varnothing $\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\{\{\varnothing\}\}\}$

A Construction of the Natural Numbers
$\mathbf{0} \stackrel{\text { def }}{=} \varnothing, \mathbf{1} \stackrel{\text { def }}{=}\{\varnothing\}, \mathbf{2} \stackrel{\text { def }}{=}\{\{\varnothing\}\}, \ldots$ The successor of set \mathbf{n}
$(s(\mathbf{n}))$ is defined as $s(\mathbf{n}) \stackrel{\text { def }}{=} \mathbf{n} \cup\{\mathbf{n}\}$. We define addition as $\mathbf{m}+\mathbf{0} \stackrel{\text { def }}{=} \mathbf{m}$ and $\mathbf{m}+s(\mathbf{n}) \stackrel{\text { def }}{=} s(\mathbf{m}+\mathbf{n})$.

Definition 3.7. The power Set of a Set
 Definition 3.7: The power set of a set A, denoted $\mathcal{P}(A)$, is

 the set of all subsets of $A: \mathcal{P}(A) \stackrel{\text { def }}{=}\{S \mid S \subseteq A\}$If $|A|=k$. Then $|\mathcal{P}(A)|=2^{k}$.

The Cartesian Product of Sets

 Definition 3.8: The Cartesian product $A \times B$ of two sets A and B is the set of all ordered pairs with the first component from A and the second component from $B: A \times B \stackrel{\text { def }}{=}$ $\{(a, b) \mid a \in A \wedge b \in B\}$.$|A \times B|=|A| \cdot|B|$.

relations

Definition 3.9. Ahe Relation Concept
Definition 3.9: A (binary) relation ρ from a set A to a set B (also called an (A, B)-relation) is a subset of $A \times B$. If $A=B, \rho$ is called a relation on A.
Insetad of $(a, b) \in \rho$ one usually write $a \rho b$ (and $(a, b) \notin \rho$: a pb).
Definition 3.10: For any set A, the identity relation on A, denoted id_{A} (or simply id), is the realation $\mathrm{id}_{A}=$ $\{(a, a) \mid a \in A\}$.
There are $2^{n^{2}}$ different relations on a set o fcardinality n. The relation concept can be generalized from binary to k-ar The relation concept can be generalized from binary to k-ary
relations. Such realtions play an important role in modeling relational databases. Representing Relations
For finite sets A and B, ρ from A to B can be represented as a boolean $|A| \times|B|$ matrix M^{ρ} with rows and columns labeled by the elements of A and B respectively. For $a \in A$ and $b \in B, M_{a b}^{\rho}=1 \stackrel{\text { def }}{\Longleftrightarrow} a \rho b$.
Alternatively, directed graph $G=(V, E)$ with $|A|+|B|$ vertices labeled by the elements of A and $B .(a, b) \in E \stackrel{\text { def }}{\Longleftrightarrow}$ tices labeled by the elements of A and $B .(a, b) \in E \Longleftrightarrow$
$a \rho b$. Such a graph may contain loops, for instance if ρ on $a \rho b$. Such a graph may contain loops, for in
some set.
Set Operations on Relations

The Inveres of a Relation

Definition 3.11: The inverse of a relation ρ from A to B is the relation $\hat{\rho}$ from B to A defined by $\hat{\rho} \xlongequal{\text { def }}\{(b, a) \mid(a, b) \in$ $\rho\}$.
For all a, b we have $b \hat{\rho} a \Leftrightarrow a \rho b$. Alternative for $\hat{\rho}$ is ρ^{-1}.

Composition of Relations

Definition 3.12: $\quad \rho$ relation from A to $B . \quad \sigma$ relation Definition $3.12: \quad \rho$ relation from A to $B . ~$
from B relation
C. Then, the composition of ρ and σ, denoted $\rho \circ \sigma$ (or also $\rho \sigma$), is the relation from A to C defined by $\rho \circ \sigma \stackrel{\text { def }}{=}\{(a, c) \mid \exists b((a, b) \in \rho \wedge(b, c) \in \sigma)\}$.
Lemma 3.7: The composition of relations is associative. $\rho \circ(\sigma \circ \phi)=(\rho \circ \sigma) \circ \phi$.
In matrix representation: Matrix multiplication with all entries >1 set to 1 . Graph representation: $a \rho \sigma c$ if and only if path from a to c.
Lemma 3.8: ρ form A to $B . \sigma$ from B to $C . \hat{\rho \sigma}=\hat{\sigma} \hat{\rho}$.
Special Properties of Relations
Definition 3.13: ρ on A is reflexive if $a \rho a$ is true for all $a \in A: i d \subseteq \rho$.
Matrix representation: Diagonal only contains 1. Graph: All loops.
Definition 3.14: ρ on A irreflextive if $a / \rho b$ for all $a \in A$. $\rho \cap i d=\varnothing$.
Definition 3.15: ρ on A is symmetric if $a \rho b \Leftrightarrow b \rho a$ for all $a, b \in A: \rho=\hat{\rho}$.

Matrix representation: matrix symmetric. Graph: undirected

graph

Definition 3.16: ρ on A antisymmetric if $a \rho b \wedge b \rho a \Rightarrow a=$ b is true for all $a, b \in A: \rho \cap \hat{\rho} \subset i d$
Graph: no cycle of length 2.
Definition 3.17: ρ on A is transitive if $a \rho b \wedge b \rho c \Rightarrow a \rho c$ is true for all $a, b, c \in A$.
Lemma 3.9: ρ transitive if and only if $\rho^{2} \subseteq \rho$
Transitive Closure
Definition 3.18: The transitive closure of a relation ρ on set A, denoted ρ^{*}, is $\rho^{*}=\bigcup_{n \in \mathbb{N} \backslash\{0\}} \rho^{n}$
Graph: $a \rho^{k} b$ if and only if walk of length k from a to b Transitive closure is the reachability relation. $a \rho^{*} b$ if an only if thre is a path from a to b.

equivalence relations

Definition of Equivalence Relation

Definition 3.19: An equivalence relation is a relation on set A that is reflexive, symmetric, and transitive.
Definition 3.20: For an equivalence relation θ on a set A and for $a \in A$, the set of elements of A that are equivalen to a is called the equivalence class of A and is denoted $[a]_{\theta}$ $[a]_{\theta} \xlongequal{\text { def }}\{b \in A \mid b \theta a\}$
Lemma 3.10: The intersection of two equivalence realtions (on the same set) is an equivalence relation

Equivalence Classes Form a Partition

Definition 3.21: A partition of a set A is a set of mutually disjoint subsets of A that cover A. $\left\{S_{i} \mid i \in \mathcal{I}\right\}$ of sets S^{\prime} satisfying $S_{i} \cap S_{j}=\varnothing$ for $i \neq j$ and $\bigcup_{i \in \mathcal{I}} S_{i}=A$. Relation \equiv : Two elementents are \equiv-related if and only if they are in the same set of the partition.
Definition 3.22: The set of equivalence classes of an equivalence relation θ, denoted by $A / \theta \stackrel{\text { def }}{=}\left\{[a]_{\theta} \mid a \in A\right\}$ is calle the quotient set of A by θ, or simply A modulo θ, or A $\bmod \theta$.

Theorem 3.11: The set A / θ of equivalence classes of an

Example: Definition of the Rational Numbers

$A=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$. We define \sim with $(a, b) \sim(c, d) \stackrel{\text { def }}{\Longleftrightarrow}$ $a d=b c$. It can be shown that \sim is reflexive, symmetric, and transitive. To every equivalence class $[(a, b)]$ we associate the rational number a / b. Thus, $\mathbb{Q} \stackrel{\text { def }}{=}(\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})) / \sim$.

partial order relations

Definition 3.23: A partial order (or simply order relation) on a set A is a relation that is reflexive, antisymmetric, and transitive. A set A together with a partial order \preceq on A is called partially ordered set (or simply poset) and is denoted as $(A ; \preceq)$.
$a \prec b \stackrel{\text { def }}{\Longleftrightarrow} a \preceq b \wedge a \neq b$.
Definition 3.24: For a poset ($A ; \preceq$), two elements a and b are called comparable if $a \preceq b$ or $b \preceq a$; otherwise, they are called incomparable.
Definition 3.25: If any two elements of a poset $(A ; \preceq)$ are comparable, then A is called totally ordered (or linearly ordered) by \preceq.

Hasse Diagrams
Definition 3.26: In a poset $(A ; \preceq)$ an element b is said to cover an element a if $a \prec b$ and there exists no c with $a \prec c$ Definition 3.27: The Hasse diagram of (finite) poset (A a \preceq) is the directed graph whose vertices are labeled with the elements of A and where there is an edge from a to b if anc only if b covers a.

It is usually drawn such that whenever $a \prec b, b$ is places higher than a. Then, all arrows are directed upwards and can Combinations of Posets and the Lexicographic Order Definition 3.28: For given posets ($A ; \preceq$) and ($B ; \sqsubseteq$), their direct produce denoted $(A ; \prec) \times(B ; \sqsubset)$, is the set $A \times B$ with the relation $\leq(o n A \times B)$ defined by $\left(a_{1} b_{1}\right) \leq$ $\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow} a_{1} \preceq a_{2} \wedge b_{1} \sqsubseteq b_{2}$.
Theorem 3.12: $(A ; \preceq) \times(B ; \sqsubseteq)$ is a partially ordered set. Theorem 3.13: For given posets $(A ; \preceq)$ and $(B ; \sqsubseteq)$, the relation $\leq_{l e x}$ defined on $A \times B$ by $\left(a_{1}, b_{1}\right) \leq_{l e x}$ $\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow} a_{1} \prec a_{2} \vee\left(a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}\right)$ is a partial If both $(A ; \preceq)$ and $(B ; \sqsubseteq)$ are totally ordered, then so is $\leq_{l e x}$

Special Elements in Posets

1. $a \in A$ is a minimal (maximal) element of A if there exists no $b \in A$ with $b \prec a(b \succ a)$.
2. $a \in A$ is the least (greatest) element of A if $a \preceq b$
3. $a \in A$ is a lower (upper) bound of S if $a \prec b(a \succ b)$ 4. for all $b \in S$.
4. $a \in A \in$ is the greatest lower bound (least upper bound) of S if a is the greatest (least) element of the set of all lower (upper) bounds of S.
Definition 3.30: A poset $(A ; \preceq)$ is well-ordered if it is totally ordered and if every non-empty subset of A has a least element.

ally ordered finite poset is wel

Definition 3.31: Let $(A ; \preceq)$ be a poset. If a and b have a greatest lower bound, then it is called the meet of a and b, often denoted $a \wedge b$. If a and b have a least upper bound, then it is called the join of a and b, often denoted $a \vee b$.
Definition 3.32: A poset $(A ; \preceq)$ in which every pair of elements has a meet and a join is called a lattice.

functions

Functins are a special type of relation.
Definition 3.33: A function $F: A \rightarrow B$ from a domain A to a codomain B is a relation from A to B with the special properties:

1. $\forall a \in A, \exists b \in B: a f b$ (F is totally defined)
2. $\forall a \in A, \forall b, b^{\prime} \in B:\left(a f b \wedge a f b^{\prime} \rightarrow b=b^{\prime}\right)(f$ is well-defined)

Definition 3.34: The set of all functions $A \rightarrow B$ is denoted Definition 3.35: A partial function $A \rightarrow B$ is a relation from A to B such that condition 2. above holds.
Two (partial) functions with common domain A and codomain B are equal if they are equal as relations.
Definition 3.36: For a function $f: A \rightarrow B$ and a subset S of A, the image of S under f, dnoted $f(S)$, is the set $f(S) \stackrel{\text { def }}{=}\{f(a) \mid a \in S\}$.
Definition 3.37: The subset $f(A)$ of B is called the image (or range) of f and is also denoted $\operatorname{Im}(f)$.
Definition 3.38: For a subset T of B, the preimage of T, denoted $f^{-1}(T)$, is the set of values in A that ap into T : $f^{-1}(T) \stackrel{\text { def }}{=}\{a \in A \mid f(a) \in T\}$
Definition 3.39: $f: A \rightarrow B$ is called

1. injective (or on-to-one/an injection) if for $a \neq b$, we have $f(a) \neq f(b)$
surjective (or onto) if $f(A)=B$ - for every $b \in B$ $b=f(a)$ for some $a \in A$
2. bijective (or a bijection) if it is both injective and surjective

Definition 3.40: For a bujective function f, the inverse is
called the inverse function of f, usually denoted as f^{-1}.
Definition 3.41: The composition of a function $f: A \rightarrow B$
and a function $g: B \rightarrow C$, denoted $g \circ f$ or simply $g f$, is defined by $(g \circ f)(a)=g(f(a))$
Notice that this notation is ambigous. Because the order for notation is different than the one used for compositions or

relations

Lemma 3.14: Function composition is associative: $(h \circ g) \circ$ $f=h \circ(g \circ f)$. countable and uncountable sets

Definition 3.42:

- Two sets A, B are equinumerous $(A \sim B)$ if there exists a bijection $A \rightarrow B$.
- The set B dominates the set $A(A \preceq B)$ if $A \sim C$
- A set A is called countable if $A \prec \mathbb{N}$, and uncount able otherwise.
$\underset{A \subset B \Rightarrow A .15: ~}{\text { Lemma }}$ (i) - The relation \preceq is transitive. \& (ii) $A \subseteq B \Rightarrow A \preceq B$.
Theorem 3.16 - Bernstein-Schröder theorem:
$B \preceq A \Rightarrow A \sim B$

Between Finite and Countably Infinite

For finite $A, B: A \sim B \Leftrightarrow|A|=|B|$.
Theorem 3.17: A set A is countable if and only if it is fi nite or if $A \sim \mathbb{N}$. ((Re)Phrased: There is no cardinality leve between finite and countably infinite.)

Important Countable Sets

Theorem 3.18: The set $\{0,1\}^{*} \stackrel{\text { def }}{=}$ $\{\epsilon, 0,1,00,01,10,11,000,001, \ldots\}$ of finitte binary sequences is countable
Proof: 1 at beginning - standard binary interpretation
Theorem 3.19: $\mathbb{N} \times \mathbb{N}\left(=\mathbb{N}^{2}\right)$ (set of ordered pairs of natural numbers) is countable
Proof: $k+m=t-1, m=n-\binom{t}{2}, t>0$ (diagonals, bo to top)
Corollary 3.20: The Cartesian product $A \times B$ of two countable sets A and B is countable: $A \preceq \mathbb{N} \wedge B \preceq \mathbb{N} \Rightarrow$ $A \times B \preceq \mathbb{N}$.
Cornal numbers \mathbb{Q} are countable Theorem 3.22: A and A_{i} for $i \in \mathbb{N}$ be countable sets.

- For any $n \in \mathbb{N}$, the set A^{n} of n-tuples over A is countable.
- The union $\bigcup_{i \in \mathbb{N}} A_{i}$ of a countable list A_{0}, A_{1}, \ldots of
countable sets is countable
- The set A^{*} of finite sequences of elements from A is countable.

Uncountability of $\{0,1\}^{\infty}$

Definition 3.43: $\quad\{0,1\}^{\infty}$ set of semi-infinite binary sequences (or, equivalencly, the set of functions $\mathbb{N} \rightarrow\{0,1\}$. Theorem 3.23: The set $\{0,1\}^{*}$ is uncountable
Proof by Cantor's diagonalization argument.
Also note generally: $\mathbb{N} \prec\{0,1\}^{\infty} \sim \mathbb{R} \sim \mathbb{R} \times \mathbb{R} \prec \mathcal{P}(\mathbb{R})$ Existence of Uncomputable Functions
Definition 3.44: A function $f: \mathbb{N} \rightarrow\{0,1\}$ is called computable if there is a program that, for every $n \in \mathbb{N}$, when given n as input, outputs $f(n)$.

There are uncomputable function \mathbb{N}
One program: One function at most. Uncountably many functions. Only countably many programs (finite bit-strings). Halting problem: Program with program as input. Uncomputable, whether terminates

number theory

Mathematical theory introduction

formally scope of this course

divisors and division

Definition 4.1: For integers a and b we say that a divides b, denoted $a \mid b$, if there exists an integer c such that $b=a c$. In this case, a is called a divisor or b, and b is called a multiple of a. If $a \neq 0$ and a divisor exists, c is called the quotient when b is divided by a, and we write $c=\frac{b}{a}$ or $c=b / a$. We write $a \not \backslash b$ if a does not divide b.

Division with Remainders Euclid: For all integers a an

Theorem 4.1 - Euclid: For all integers a and $d \neq 0$ there exist unique integers q and r satisfying $a=d q+r$ and $0 \leq r<|d|$.
a : dividend, d : divisor, q : quotient, $r\left(=R_{d}(a)=a\right.$ $\bmod d)$: remainder
Definition 4.2: For integers a and Divisors
efinition 4.2: For integers a and b (not both 0), an integer a is called a greatest common divisor of a and b if d divides $d: d|a \wedge d| b \wedge \forall c((c|a \wedge c| b) \rightarrow c \mid d)$.
For integers two ggd: \pm. For other rings more.
For integers 4.3: ggd. \pm. For other rings more.
Definition 4.3: For $a, b \in \mathbb{Z}$ (not both 0) one denotes Definition 4.3: For $a, b \in \mathbb{Z}$ (not both 0) one denotes
the unique positive greatest common divisor by $\operatorname{gcd}(a, b)$. If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime (teiler-
ind If $g c d(a)$
fremd). frem
Lemma 4.2: For any integers, $m n, q$ we have $g c d(m, n-$ $q m)=\operatorname{gcd}(m, n)$.
Implies: $\operatorname{gcd}\left(m, R_{m}(n)\right)=\operatorname{gcd}(m, n) \rightarrow$ Euclid's $g c d$ algorithm.
Definition 4.4: For $a, b \in \mathbb{Z}$, the ideal generated by a and b, denoted (a, b), is the set $(a, b):=\{u a+v b \mid u, v \in \mathbb{Z}\}$. Similarly, the ideal generated by a single integer a is $(a):=$ $\{u a \mid u \in \mathbb{Z}\}$.
Lemma 4.3: For $a, b \in \mathbb{Z}$ there exists $d \in \mathbb{Z}$ such that $(a, b)=(d)$.
Lemma 4.4: Let $a, b \in \mathbb{Z}$ (not both 0). If $(a, b)=(d)$, then (d) is a greatest common divisor of a and b.
Corollary 4.5: For $a, b \in \mathbb{Z}$ (not both 0), there exist $u, v \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=u a+v b$.
To determine u, v, consider extended Euclid's algorithm for $\operatorname{gcd}(a, b)$ (preferably) with $a>b$:

$$
\begin{aligned}
& r_{0}=a, s_{0}=1, t_{0}=1 \\
& r_{1}=b, s_{1}=0, t_{1}=1
\end{aligned}
$$

$$
r_{i+1}=r_{i-1}-q_{i} r_{i}\left(0 \leq r_{i+1}<\left|r_{i}\right|\right),\left(\text { defining } q_{i}\right)
$$

$$
s_{i+1}=s_{i-1}-q_{i} s_{i}, \quad t_{i+1}=t_{i-1}+q_{i} t_{i}
$$

Stop, when $r_{k+1}=0: \operatorname{gcd}(a, b)=r_{k}=a s_{k}+b t_{k}$ Least Common Multiples

Definition 4.5: The least common multiple l of two posi tive integers a and b, denoted $l=l c m(a, b)$, is the commor multiple of a and b which divides every common multiple o a and $b: a|l \wedge b| l \wedge \forall m((a|m \wedge b| m) \rightarrow l \mid m)$

factorization into primes

Not exam-relevant some basic facts about primes
Not exam-relevant
congruences and modular ari
Modular Congruences
Definition 4.8: For $a, b, m \in \mathbb{Z}$ with $m \geq 1$, we say that a is congruent to b modulo m if m divides $a-b$. We write $a \equiv$ $b(\bmod m)$ or simply $a \equiv_{m} b: a \equiv_{m} b \stackrel{\text { def }}{\Longleftrightarrow} m \mid(a-b)$. Lemma 4.13: For any $m \geq 1, \equiv_{m}$ is an equivalence relation.
Lemma 4.14: If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a+c \equiv_{m} b+d$ and $a c \equiv_{m} b d$.
Corollary 4.15: Let $f\left(x_{1}, \ldots, x_{k}\right)$ be a multip-variate polynomial in k variables with integer coefficients, and let $m \geq$ 1. If $a_{i} \equiv_{m} b_{i}$ for $1 \leq i \leq k$, then: $f\left(a_{1}, \ldots, a_{k}\right) \equiv_{m}$ $f\left(b_{1}, \ldots, b_{k}\right)$

Modular Arithmetic
m equivalence classes of $\equiv_{m}:[0],[1], \ldots,[m-1]$. Each $[a]$ has a natural representative $R_{m}(a) \in[a]$ in \mathbb{Z}_{m}. Lemma 4.16: For any $a, b, m \in \mathbb{Z}$ with $m \geq 1$: (i) $a \equiv_{m} R_{m}(a) \&(\mathrm{ii}): a \equiv_{m} b \Leftrightarrow R_{m}(a)=R_{m}(\bar{b})$.
corollary 4.17: Let $f\left(x_{1}, \ldots, x_{k}\right)$ be a multivariate polynomial in k variables with integer coefficients, and let $m \geq 1$. Then $R_{m}\left(f\left(a_{1}, \ldots, a_{k}\right)\right)=$ $R_{m}\left(f\left(R_{m}\left(a_{1}\right), \ldots, \bar{R}_{m}\left(a_{k}\right)\right)\right)$

Multiplicative Inverses

Lemma 4.18: The congruence equation $a x \equiv_{m} 1$ has a so Lemma 4.18: The congruence equation $a x \equiv_{m} 1$ has a so-
lution $x \in \mathbb{Z}_{m}$ if and only if $\operatorname{gcd}(a, m)=1$. The solution is unique.
Definition 4.9: If $\operatorname{gcd}(a, m)=1$, the unique solution $x \in \mathbb{Z}_{m}$ to the congruence equation $a x \equiv_{m} 1$ is called $x \in \mathbb{Z}_{m}$ to the congruence equation $a x \equiv m 1$ is called
the multiplicative inverse of a modulo m. One also uses the notation $x \equiv_{m} a^{-1}$ or $x \equiv_{m} 1 / a$.
Consider: $a x \equiv_{m} 1$. We must have $\operatorname{gcd}(a, m)=1$. Also, $\operatorname{gcd}(a, m)=u a+v m$ (extended Euclid. Alg.) So, $1 \equiv_{m} u a+v m$ for some $u, v: 1 \equiv_{m} u a$. Thus $R_{m}(u)=x$.

The Chinese Remainder Theorem

Theorem 4.19: Let $m_{1}, m_{2}, \ldots, m_{r}$ be pairwise relatively prime integers and let $M=\prod_{i=1}^{r} m_{i}$. For every lis a_{1}, \ldots, a_{r} with $0 \leq a_{i}<m_{i}$ for $1 \leq i \leq r$, the system of congruence equations

$$
\begin{gathered}
x \equiv_{m_{1}} a_{1} \\
x \equiv m_{m_{2}} a_{2} \\
\quad \ldots \\
x \equiv_{m_{r}} a_{r}
\end{gathered}
$$

for x has a unique solution x satisfying $0 \leq x<N$ with p a very large prime (2048 bits for example). y is esasily
computable even if p, g, x are very large numbers. Comput ng x when given p, y is generally (believed to be) compu ationally infeasible. The prime p and the basis g are public parameters. The communicatino must be authenticated, but not secret.

Alice	insecure channel	Bob
select x_{A} at random from $\{0, \ldots, p-2\}$		select x_{B} at random from $\{0, \ldots, p-2\}$
$y_{A}:=R_{p}\left(g^{x_{A}}\right)$		$y_{B}:=R_{p}\left(g^{x_{B}}\right)$
	y_{B}	
$k_{A B}:=R_{p}\left(y_{B}^{x_{A}}\right)$		$k_{B A}:=R_{p}\left(y_{A}^{x_{B}}\right)$

$k_{A B} \equiv_{p} y_{B}^{x_{A}} \equiv_{p}\left(g^{x_{B}}\right)^{x_{A}} \equiv_{p} g^{x_{A} x_{B}} \equiv_{p} k_{B A}$

Algebra

introduction
Mathematical study of structures consting of a set and certain operations on the set. Goal: understanding such algebraic systems at the highest level of generality and abstraction.

Algebraic Structures

Definition 5.1: An operation on a set S is a function $S^{n} \rightarrow S$, where $n \geq 0$ is called the "arity" of the operation.
Operations with arity 1 and 2 are called unary and binary operations, respectively. An operation with 0 arity is called a
Definition 5.2: An algebra (or algebraic strucutre or Ω algebra) is a pair $\langle S ; \Omega\rangle$ where S is a set (the carrier of the algebra) and $\Omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ is a list of operations on S.

monoids and groups

We consider one binary (and possible one unary and one nullary) operation
Neutral Element
Definition 5.3: A left [right] neutral element (or identity element) of an algebra $\langle S ; *\rangle$ is an element $e \in S$ such that $e * a=a[a * e=a]$ for all $a \in S$. If $e * a=a * e$
for all $a \in S$, then e is simply called neutral element.
Lemma 5.1: If $\langle S ; *\rangle$ has both a left and a right neutral element, then they are equal. In particular $\langle S ; *\rangle$ can have at most one neutral element

most one neutral element. Associativity and Monoids

Definition 5.4: A binary operation $*$ on a set S is associative if $a *(b * c)=(a * b) * c$ for all $a, b, c \in S$.
Addition and multiplication are associate operations in $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_{m}$
Definition 5.5:
Definition 5.5: A monoid is an algebra $\langle M ; *, e\rangle$ where $*$
is associative and e is the neutral element.
$\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_{m}$ with addition (neutral element 0) and multiplication (neutral element 1) respectively are monoids.

Inverses and Groups

Definition 5.6: A left [right] inverse element of an element a in an algebra $\langle S ; *, e\rangle$ with neutral element e is an element $b \in S$ such that $b * a=e[a * b=e]$. If $b * a=a * b=e$ then b is simply called an inverse of a.
Lemma 5.2: In a monoid $\langle M ; *, e\rangle$, if $a \in M$ has a left and a right inverse, then they are equal. In particular, a has Definition 5.7: A group is an algebra $\langle G ; *, \hat{,}, e\rangle$ satisfying the follwoing axioms:
$*$ is associative
2. e is a neutral element as an inverse element \hat{a}.
For addition $(+)$: inverse $-a$, neutral element 0 . For multiplication: inverse a^{-1} or $1 / a$, neutral element: 1 . We have $\langle\mathbb{N} ;+\rangle,\langle\mathbb{Z} ;+\rangle,\langle\mathbb{Q} ;+\rangle,\langle\mathbb{Q} \backslash\{0\} ; \cdot\rangle,\langle\mathbb{R} ;+\rangle, ~$ $\langle\mathbb{R} \backslash\{0\} ; \cdot\rangle,\left\langle\mathbb{Z}_{m} ; \oplus\right\rangle$.
Definition 5.8: A group $\langle G ; *\rangle$ (or monoid) is called commutative or abelian if $a * b=b * a$ for all $a, b \in G$.

1. $\hat{\hat{a}}=a$
2. $a \hat{*} b=\hat{b} * \hat{a}$

Left cancellation law: $a * b=a * c \Rightarrow b=c$
Right cancellation law: $b * a=c * a \Rightarrow b=c$
5. $a * x=b[x * a=b]$ has a solution for any a and b

(Nonn)minimality of the Group Axiom

 The above aximos may be simplified. Replace G2 with G2, $(a * e=a)$ and $\mathbf{G 3}$ with G3' $(\hat{a} * a=e)$. Then, G1, G2', G3' imply G2 and G3.Some Examples of Group
Examples irrelevant.

the structure of groups

Direct Products of Groups

Definition 5.9: The direct product of n groups $\left\langle G_{1} ; *_{1}\right\rangle, \ldots$, $\left\langle G_{n} ; *_{n}\right\rangle$ is the algebra $\left\langle G_{1} \times G_{2} \times \ldots \times G_{n} ; \star\right\rangle$, where the operation \star is component wise: $\left(a_{1}, \ldots, a_{n}\right) \star\left(b_{1}, \ldots, b_{n}\right)=$ $\left(a_{1} *_{1} b_{1}, \ldots, a_{n} *_{n} b_{n}\right)$.
Lemma 5.4: $\left\langle G_{1} \times \ldots \times G_{n} ; \star\right\rangle$ is a group, where the neutral element and the inversion operation are component-wise in the respective groups.
Definition Group Homomorphisms $\langle H ; \star, \sim$ For two groups $\langle G ; *, \hat{,}, e\rangle$ and , a function $\psi: G \rightarrow H$ is called a group ho morphism if, for all a and $b, \psi(a * b)=\psi(a) \star \psi(b)$. If ψ is a bijection from G to H, then it is called an isomorphism,
and we say that G and H are isomorphic and write $G \simeq H$. Lemma 5.5: A group homomorphism ψ from $\langle G ; *, \hat{,}, e\rangle$ to $\left\langle H ; \star, \sim, e^{\prime}\right\rangle$ satisfies (i) $\psi(e)=e^{\prime}$ and (ii) $\psi(\hat{a})=\tilde{\psi(a)}$ for all a.

Subgroups

Definition 5.11: A subset $H \subseteq G$ of a group $\langle G ; *, \hat{,}, e\rangle$ is called a subgroup of G if $\langle H ; *, \hat{,}, e\rangle$ is a group, i.e., if H is closed with respect to all operations: (1) $a * b \in H$ for all $a, b \in H$, (2) $e \in H$, (3) $\hat{a} \in H$ for all $a \in H$

The Order of Group Elements and of a Group Definition 5.12: G a group. $a \in G$. The order of a, denoted $\operatorname{ord}(a)$, is the least $m \geq 1$ such that $a^{m}=e$, if such an m exists, and $\operatorname{ord}(a)$ is said to be infinite otherwise, written $\operatorname{ord}(a)=\infty$.
If $\operatorname{ord}(a)=2$ for some $a: a^{-1}=a$. (self-inverse)
Lemma 5.6: In a finite group G, every element has a finite

order.
Definition 5.13: For a finite group

Cyclic Groups

Definition 5.14: For a group G and $a \in G$, the group gen erated by a, denoted $\langle a\rangle$ is defined as $\langle a\rangle \stackrel{\text { def }}{=}\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. $\langle a\rangle$ is the smallest subgroup of G containing $a \in G$.
Definition 5.15: A group $G=\langle g\rangle$ generated by an elemen $g \in G$ is called cyclic, and g is called a generator of G.
There may be multiple generators. g^{-1} is always a generato theo. $\left\langle\mathbb{Z}_{n} ; \oplus\right\rangle$ (and hence abelian).

Application: Diffie-Hellman for General Groups
Nas described before for \mathbb{Z}_{p}^{*} (for notation see below). Works as well in any cyclic group $G=\langle g\rangle$ for which computing x from g^{x} is computationally infeasible.
Also, elliptic curves are an important class of cyclic groups used in cryptography

The Order of Subgroup

Theorem 5.8 - Lagrange: Let G be a finite group and let H a subgroup of G. Then the order of H divides the order of .
Corollary 5.9: For a finite group G, the order of every el ement divides the group order, i.e., ord (a) divides $|G|$ for every $a \in G$.
Corollary 5.10: Let G be a finite group. Then $a^{|G|}=e$ for every $a \in G$.
Corollary 5.11: Every group of prime order is cyclic, and in such a group every element except the neutral element is a generator

The Group \mathbb{Z}_{m}^{*} and Euler's Function

Definition 5.16: $\mathbb{Z}_{m}^{*} \stackrel{\text { def }}{=}\left\{a \in \mathbb{Z}_{m} \mid g c d(a, m)=1\right\}$.
That so that we have a group. Because $a \in \mathbb{Z}_{m}$ has a multiplicative inverse if and only if $\operatorname{gcd}(a, m)=1$.
Definition 5.17: The Euler function $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is defined as the cardinality of $\mathbb{Z}_{m}^{*}: \varphi(m)=\left|\mathbb{Z}_{m}^{*}\right|$
If p is prime: $\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}=\mathbb{Z}_{p} \backslash\{0\}$. Hence, $\varphi(p)=p-1$
Lemma 5.12: If the prime factorization of m is $m=$ $\prod_{i=1}^{r} p_{i}^{e_{i}}$, then $\varphi(m)=\prod_{i=1}^{r}\left(p_{i}-1\right) p_{i}^{e_{i}}$
Theorem 5.13: $\left\langle\mathbb{Z}_{m}^{*} ; \odot,^{-1}, 1\right\rangle$ is a group. Theorem 5.13: $\left\langle\mathbb{Z}_{m}^{*} ; \odot,^{-1}, 1\right\rangle$ is a group. Corollary 5.14 - Fermat, Euler: For all $m>2$ and all a with $\operatorname{gcd}(a, m)=1: a^{\varphi(m)} \equiv_{m} 1$. In particular, for every prime p and every a not divisible by $p: a^{p-1} \equiv_{p} 1$.
Theorem 5.15: The group \mathbb{Z}_{m}^{*} is cyclic if and only if $m=2, m=4, m=p^{e}, m \stackrel{m}{=} 2 p^{e}$, where p is an odd prime and $e \geq 1$.

RSA public-key encryption

e-th Roots in a Group
Theorem 5.16: G some finite group. $e \in \mathbb{Z}$ relatively prime to $|G|$. The function $x \mapsto x^{e}$ is a bijection and the (unique) e-th root of $y \in G$, namely $x \in G$ satisfying $x^{e}=y$ is $x=y^{d}$ where d is the multiplicative inverse of e modulo $|G|: e d \equiv_{|G|} 1$.
$|G|$ known, d computable from $e d \equiv_{|G|} 1$ with the extended Euclidean algorithm. No general method is known for computing e-th roots in a group G without knowing its order.

Description of RSA
We consider \mathbb{Z}_{n}^{*} with $n=p q, p$ and q being two suffieciently large secret primes. Then: $\left|\mathbb{Z}_{n}^{*}\right|=\varphi(n)=(p-1)(q-1)$. The order can only be managably computed if the (secret) prime factors p and q of n are known.

Alice

insecure channel
Bob

Generate
 primes p and q
 $n=p \cdot q$

$f=(p-1)(q-1)$
select e
$d \equiv_{f} e^{-1}$ \qquad plaintext
$m \in\{1, \ldots, n-1\}$
$m=R_{n}\left(y^{d}\right)$

The (public) encryption transformation is defined by m ю $y=R_{n}\left(m^{e}\right)$. The (secret) decryption transformation is de fined by $y \mapsto m=R_{n}\left(y^{d}\right)$. d can be computed according to $e d \equiv(p-1)(q-1) 1$.
That is the naive approach (being deterministic etc.). The
message m is usually a short-term encryption key. message m is usually a short-term encryption key.

On the Security of RSA

First, it is widely believed that computing e-th roots modulo n is computationally equivalent to factoring $n /$ large integerns - but not definitely known. Without a major breakthrough and processor speed developing as predicted, a 2048-bit modulus seems secure for another 15 years. Larger modulo are secure much longer.
Note that RSA is only (believed to be) secure if the communication channel is authenticated. If an adversary can interfere with the data traffic, it can just provide its own keys to both publick-key certificates signed by a trusted authority.
Also, the message must be randomized for RSA to be secure Also, the message must be randomized for RSA to be secure Otherwise, an adversary could simply encrypt messages it
self and comparing them with the encrypted messages. For a small message space this allows to break the system.

Digital Signatures

Signature can only be created by the entity knowing the se Signature can only be created by the entity knowing the se
crt key. Can be verified by anyone knowing the public key crt key. Can be verified by anyone knowing the public key.
Message: $m . z=m \| h(m)$ (h introduces redundancy), $z \in \mathbb{Z}_{n}$. Signature $s=R_{n}\left(z^{d}\right)$. Verification: checking $R_{n}\left(s^{e}\right)=m \| h(m)$.
rings and fields

Now: two binary operations, usually called addition and mul-

 tiplication.Definition 5.18: A ring $\langle R ;+,-, 0, \cdot, 1\rangle$ is an algebra for which

1. $\langle R ;+,-, 0\rangle$ is a commutative group
2. $\langle R ; \cdot \cdot, 1\rangle$ is a monoid
3. $a(b+c)=(a b)+(a c)$ and $(b+c) a=(b a)+(c a)$ for all $a, b, c \in R$.
Commutative ring: multiplication is commutative $(a b=b a)$ Lemma 5.17: For any ring $\langle R ;+,-, 0, \cdot, 1\rangle$, and for all $a, b \in R$:
4. $0 a=a 0=0=0$
5. $(-a) b=-(a b)$
6. $(-a)(-b)=a b$
7. R non-trivial $\Rightarrow 1 \neq 0$

Definition 5.19: The characteristic of a ring is the order of 1 in he additive group if it is finite, and otherwise the charac Unts and the Bultiplicative \mathbf{G}
Unts and the Multiplicative Group of a Ring Definition 5.20: An element u of a ring R is called a unit if u is invertible: $u v=v u=1$ for some $v \in R$. The set of
units of R is denoted by R^{*}. Lemma 5.18: For a ring I (the group of units of R).
Definition 5.21: For $a, b \in R$ with $a \neq 0$ we say that a divides b, denoted $a \mid b$, if there exists $c \in R$ such that $b=a c$. In this case, a is called a divisors of b and b is called a multiple of a. All non-zero elements divise 0.1 - -1 divise every element. Lemma 5.19: In any commutative ring:

- $a \mid b$ and $b|c \Rightarrow a| c$ (transitivity of $\mid)$
- $a|b \Rightarrow a| b c$ for all c
- $a \mid b$ and $a|c \Rightarrow a|(b+c)$

Definition 5.22: For ring elements a and b (not both 0), a ring element d is called a greatest common divisor of a and b if d divides both a and b and if every common divisor of a and b divides $d: d|a \wedge d| b \wedge \forall c((c|a \wedge c| b) \rightarrow c \mid d)$.

Zeordivisors and Integral Domains

Definition 5.23: An element $a \neq 0$ of a commutative ring R is called a zerodivisor if $a b=0$ for some $b \neq 0$ in R. Definition 5.24: An integral domain is a (nontrivial, $1 \neq 0$) commutative ring without zerodivisors: $\forall a \forall b(a b=0 \rightarrow$ $a=0 \vee b=0$).
Lemma 5.20: In an integral domain, if $a \mid b$, then c with $b=a c$ is unique (denoted $c=\frac{b}{a}$ or $c=b / a$ and called quotient)
Definition 5.25: A polynomial $a(x)$ over a commutative ring R in the indeterminate x is a formal expression of the form $a(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}=$ $\sum_{i=0}^{d} a_{i} x^{i}$ for some non-negative integer d, with $a_{i} \in R$. The degree of $a(x)$, denoted $\operatorname{deg}(a(x))$, is the greatest i for which $a_{i} \neq 0$. The special polynomial 0 is defined to have degree "minus infinity". Let $R[x]$ denote the set of polynomials (ni x) over R.
Actually better to understand polynomials as finite lists $\left(a_{0}, a_{1}, \ldots, a_{d-1}, a_{d}\right)$. Addition: $\quad a(x)+b(x)=$ $\sum_{i=0}^{\max \left(d, d^{\prime}\right)}\left(a_{i}+b_{i}\right) x^{i}$. Multiplication: as usual. Degree $\sum_{i=0}^{i=0}$ product at most sum of degrees. If R integral domain, exactly sum.
Theorem 5.21 :
Theorem 5.21: For any commutative ring $R, R[x]$ is a comLemma 5.22:
Lemma 5.22: (i) If D is an integral domain, then so is $D[x]$. (ii) The units of $D[x]$ are the constant polynomials that are units of $D: D[x]^{*}=D^{*}$
Definition 5.26: A field is alds
Definition 5.26: A field is a nontrivial commutative ring F in which every nonzero element is a unit. ($F^{*}=F \backslash\{0\}$). F is a field if and only if $\left\langle F \backslash\{0\} ; \cdot,{ }^{-1}, 1\right\rangle$ is an abelian
group. group.
Theorem 5.23: \mathbb{Z}_{p} is a field if and only if p is prime
Theorem 5.24: A field is an integral domain

polynomials over a field

\bar{F} field. $F|x|$ ring. - as F commutative, also $F|x|$ commu-

tative. Factorization and Irreducible Polynomials

Definition 5.27: A polynomial $a(x) \in F[x]$ is called monic if the leadin coefficient is 1 .
5efinition 5.28: A polynomial $a(x) \in F[x]$ with degree at east 1 is called irreducible if it is divisible only by constant polynomials and by constant multiples of $a(x)$.

- Polynomial of degree 1: always irreducible
- Polynomial of degree 2: irreducible of product of two polynomials of degree 1 .
- Polynomial of degree 3: irreducible or at least one factor of degree 1.
Polynomial of degree 4: irreducible or a factor of degree 1 or an irreducible factor of degree 2 .

Definition 5.29: The monic polynomial $g(x)$ of largest degree such that $g(x) \mid a(x)$ and $g(x) \mid b(x)$ is called the greatest common divisor of $a(x)$ and $b(x)$, denoted $\operatorname{gcd}(a(x), b(x))$.

The Division Property in $F[x]$

Theorem 5.25: F a field. For any $a(x)$ and $b(x) \neq 0$ in
$F[x]$ there exists a unique $q(x)$ (the quotient) and a unique
$r(x)$ (the remainder) such that $a(x)=b(x) \cdot q(x)+r(x)$ and $\operatorname{deg}(r(x))<\operatorname{deg}(b(x))$.

$r(x)$ denoted by $R_{b(x)}(a(x))$

Analogies Between \mathbb{Z} and $F[x]$, Euclidean Domains Not exam relevant!
Definition 5.30: In an integral domain, a and b are called associates $(a \sim b)$ if $a=u b$ for some unit u.
Definition 5.31. In an integral domain, a non-unit $p \in$ $D \backslash\{0\}$ is irreducible if, whenever $p=a b$, then either a or b is a unit. (p only divisible by units/associates)
Units in $\mathbb{Z}: 1,-1$. Units in $F[x]$: non-zero constant polyno mials.
$a \in D$ on associate distinguished. For $\mathbb{Z}:|a|$. For $a(x) \in F[x]$: monic polynomial associated with $a(x)$. Only considering distinguished associates for \mathbb{Z} : usual notion of primes.
Lemma 5.26: $a \sim b \Leftrightarrow a|b \wedge b| a$
Definition 5.32: A Euclidean domain is an integral domain Definition 5 .32: A Euclidean domain is an integral domain
D together with a so-called degree function $d: D \backslash\{0\} \rightarrow \mathbb{N}$ such that:

1. For every a and $b \neq 0$ in D : exists q, r such that $a=b q+r$ and $d(r)<d(b)$ or $r=0$.
2. For all nonzero $a, b \in D: d(a) \leq \bar{d}(a b)$.
$\mathbb{Z}[i]$ (Gaussian integers) are Euclidean domain with absolte value as degree.
Theorem 5.27: In a Euclidean domain every element can be factored uniquely (up to taking associates) into irreducible

elements. Polynomials as Functions

Polynomial Evaluation

For a ring $R, a(x) \in R[x]$ can be interpreted as a function $R \rightarrow R$ by defining evaluation of $a(x)$ at $\alpha \in R$ in the usual manner. This defines $R \rightarrow R: \alpha \mapsto a(\alpha)$
Lemma 5.28: Polynomial evaluation is compatible with the ring operations:

- $\underset{\text { any } \alpha}{c(x)}=a(x)+b(x) \Rightarrow c(\alpha)=a(\alpha)+b(\alpha)$ for
- $c(x)=a(x) \cdot b(x) \Rightarrow c(\alpha)=a(\alpha) \cdot b(\alpha)$ for any

Definition 5.33: Let $a(x) \in R[x]$ Roots An element $\alpha \in R$ for which $a(\alpha)=0$ is called a root of $a(x)$
Lemma 5.29: For a field $F, \alpha \in F$ is a root of $a(x)$ if and only if $x-\alpha$ divides $a(x)$.
Corollary 5.30: A polynomial $a(x)$ of degree 2 or 3 over field F is irreducible if and only if it has no roots.
Theorem 5.31: For a field F, a nonzero polynomial $a(x) \in$ $F[x]$ of degree d has at most d roots.

Polynomial Interpolation
Lemma 5.32: A polynomial $a(x) \in F[x]$ of degree at most d is uniquely determined by any $d+1$ values of $a(x)$.

finite fields

The Ring $F[x]_{m(x)}$

$a(x) \equiv_{m(x)} b(x) \stackrel{\text { def }}{\Longleftrightarrow} m(x) \mid(a(x)-b(x))$

Lemma 5.33: Congruence modulo $m(x)$ is an equivalence relation on $F[x]$, and each equivalence class has a unique representative of degree less than $\operatorname{deg}(m(x))$.
Definition 5.34: Let $m(x)$ be a polynomial of degree d over
F. Then $F[x]_{m(x)} \stackrel{\text { def }}{=}\{a(x) \in F[x] \mid \operatorname{deg}(a(x))<d\}$.
Lemma 5.34: Let F be a finite field with q elements and let $m(x)$ be a polynomial of degree d over F. Then $\left|F[x]_{m(x)}\right|=q^{d}$.

Lemma 5.35: $F[x]_{m(x)}$ is a ring with respect to addition and multiplication modulo $m(x)$.
Lemma 5.36: The congruence equation $a(x) b(x) \equiv_{m(x)}=$ 1 (for a given $a(x)$) has a solution $b(x) \in F[x]_{m(x)}$ if and only if $\operatorname{gcd}(a(x), m(x))=1$. The solution is unique. In other words, $F[x]_{m(x)}^{*}=\{a(x) \in$ $\left.F[x]_{m(x)} \mid \operatorname{gcd}(a(x), m(x))=1\right\}$.

Constructing Extension Fields

Theorem 5.37: The ring $F[x]_{m(x)}$ is a field if and only if $m(x)$ is irreducible
One can show that $\mathbb{R}_{m(x)}$ is isomorphic to \mathbb{C} for every irreducible polynomial of degree 2 over \mathbb{R}.
There are not irreducible polynomials of higher degree than 2 over \mathbb{R}.
There are
There are not irreducible polynomials of degree >1 over \mathbb{C}. Some Facts About Finite Fields
Theorem 5.38: For every prime p and every $d \geq 1$ there exists an irreducible polynomial of degree d in $G \overline{F(p)}[x]$. In particular, there exists a finite field with p^{d} elements.
Theorem 5.39: There exists a finite field with q elements if and only if q is a power of a prime. Moreover, any two finite fields of the same size q are isomorphic.
Theorem 5.40: The multiplicative group of every finite field $G F(q)$ is cyclic.
Multiplicative group of $G F(q)$ has order $q-1$ and $\varphi(q-1)$. generators.

Application: Error-Correcting Codes

On application of finite fields in CS

Definition of Error-Correcting Codes

Two problems: erased data \& errors in data. Second more severe as unkonwn.

A (n, k)-encoding function E for some alphabet \mathcal{A} is an injective function that maps a list $\left(a_{0}, \ldots, a_{k-1}\right) \in \mathcal{A}^{k}$ of k (information) symbols to a list $\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{A}^{n}$ of $n>k$ (encoded) symbols in \mathcal{A}, called codeword: $E: \mathcal{A}^{k} \rightarrow \mathcal{A}^{n}:\left(a_{0}, \ldots, a_{k-1}\right) \mapsto$ $E\left(\left(a_{0}, \ldots, a_{k-1}\right)\right)=\left(c_{0}, \ldots, c_{n-1}\right)$.
$\mathcal{C}=\operatorname{Im}(e)=\left\{E\left(\left(a_{0}, \ldots, a_{k-1}\right)\right) \mid a_{0}, \ldots, a_{k-1} \in \mathcal{A}\right\}$ is called an error-correcting code.
Definition 5.36: An (n, k)-error-correcting code over the alphabet \mathcal{A} with $|\mathcal{A}|=q$ is a subset of \mathcal{A}^{n} of cardinality q^{k}. alphabet \mathcal{A} with $|\mathcal{A}|=q$ is a subset of \mathcal{A}^{n} of cardinality q.
Definition 5.37: \quad The Hamming distance between two Definition 5.37: The Hamming distance between two
strings of equal length over a finite alphabet \mathcal{A} is the number of positions at which two strings differ. Definition 5.38: The minimum distance of an error-
correcting code \mathcal{C}, denoted $d_{\min }(\mathcal{C})$, is the minimum of the Hamming distance between any two codewords.

Decoding

Definition 5.39: A decoding function D for an (n, k) encoding function is a function $D: \mathcal{A}^{n} \rightarrow \mathcal{A}^{k}$
Such a function (should be efficiently computable) takes an Such a trary list $\left(r_{0}, \ldots, r_{n-1}\right) \in \mathcal{A}^{n}$ and decodes it to the most plausible information vectors (a_{0}, \ldots, a_{k-1}).
Definition 5.40: A decoding function D is t-error correcting for encoding function E if for any $\left(a_{0}, \ldots, a_{k-1}\right)$: $D\left(\left(r_{0}, \ldots, r_{n-1}\right)\right)=\left(a_{0}, \ldots, a_{k-1}\right)$ for any $\left(r_{0}, \ldots, r_{n-1}\right)$ with Hamming distance at most t from $E\left(\left(a_{0}, \ldots, a_{k-1}\right)\right)$.
A code \mathcal{C} is t-error correcting if there exists E and D with A code \mathcal{C} is t-error correcting if there exis
$\mathcal{C}=\operatorname{Im}(E)$ where D is t-error correcting.
Theorem 5.41: A code \mathcal{C} with minimum distance d is t error correcting if and only if $d \geq 2 t+1$.

Codes based on Polynomial Evaluation

Theorem 5.42: Let $\mathcal{A}=G F(q)$ and let $\alpha_{0}, \ldots, \alpha_{n-1}$ be ing function $E\left(\left(a_{0}, \ldots, a_{k-1}\right)\right)=\left(a\left(\alpha_{0}\right), \ldots, a\left(\alpha_{n}-1\right)\right)$,
where $a(x)$ is the polynomial $a(x)=a_{k-1} x^{k-1}+.$. An (n, k)-code over $G F\left(2^{d}\right)$ can be interpreted as a binar ($d n, d k$)-code over $G F(2)$. Minimum distance of the binary code \geq original code

Logic

introduction

proof systems

Definition
Syntactic objects defined as finite strings over some alphabet Alphabet $\Sigma . \Sigma^{*}$ set of finite strings over Σ.
Consider statements of certain type \& proofs of statement for this type.
Now, fixed statement type. $\mathcal{S} \subseteq \Sigma^{*}$, set of syntactic representations of mathematical statements of that type set of syntactic representations of proof strings.
$\tau: \mathcal{S} \rightarrow\{0,1\}$ Truth function assigns truth value. Defines

semantics.

Proof $p \in \mathcal{P}$ either valid or invalud for some $s \in \mathcal{S}$ $\phi: \mathcal{S} \times \mathcal{P} \rightarrow\{0,1\}(1$ meaning valid proof for $s)$.
0. 1\} With eyenerality one can consider $\mathcal{S}=\mathcal{P}=$
ments. 6.1 A prof system is a quadruple Π $(\mathcal{S}, \mathcal{P}, \tau, \phi)$.
ϕ has to be efficiently computable for Π to be of any use. Definition 6.2: A proof system Π is sound if not false state ment has a proof: for all $s \in \mathcal{S}$: if $\phi(s, p)=1$ for some $p \in \mathcal{P} \Rightarrow \tau(s)=1$.
Definition 6.3: A proof system Π is complete if every true statement has a proof: for all $s \in \mathcal{S}$ with $\tau(s)=1 \Rightarrow p \in \mathcal{P}$ with $\phi(s, p)=1$ exists.

Examples
A proof system with efficient verification for the existence of Hamiltonian cycles in graphs exists - just providing a cycle. However, no reaonable sound and complete proof system for
the non-existence of Hamiltonian cycles is known to exists Now, consider primality. For some number not be be prime Now, consider primality. For some number not be be prime, Proving that some number is prime, however, is harder. A Proving that some number is prime, however, is harder. A
proof consists of (1) p_{1}, \ldots, p_{k} distinct prime factors of $n-1$, proof consists of (1) p_{1}, \ldots, p_{k} distinct prime factors of $n-1$,
(2) recursive proof of primality for each p_{1}, \ldots, p_{k}, (3) a gen(2) recursive proof of primality for each $p_{1}, \ldots, p_{k},(3)$ a gen-
erator g of the group \mathbb{Z}_{p}^{*}. For understanding remember that the multiplicative group of any finite field is cyclic and has a the multiplic
generator g.

Discussion

- Proof verification must be efficient. Proof generation generally is not efficient. Requires ingenuity and ingener
- A proof system is always restricted to a certain type
- The proof verification method of logic (checking a sequence of rule applications) is only a special case.
- Existence of proof system for certain statement type does not imply existence for negated statement (at least with efficient verification)

Proof Systems in Theoretical Computer Science $\mathcal{S}=\mathcal{P}=\{0,1\}^{*} . L \subseteq\{0,1\}^{*}$ with $L:=\{s \mid \tau(s)=1\}$ Hence, L also defines predicate τ.
L : formal language. Problem: prove that s in language $s \in L$. Proof for $s \in L$: witness w.

Consider W bounded by plynomial in the length of $s \& \phi$ computable in polynomial time in the length of s. NP: Class of languages for which such a polynomial-time computable verification function exists. Interactive proofs: Proof is a protocol/interaction between prover / verifier. Accepts exponentially small probability of verifier accepting proof for a flase statement. Justification

- statements provable, not provable conventionally
- zero-knowledge proofs (verifier can not proof itself)
- relevance for block-chain systems etc.

elementary general concepts in logic

The General Goal of Logic

A goal of logic is to provide a specific proof system Π for which a very large class of matheamtical statements can be expressed as an element of \mathcal{S}.
Never, all possible math. statements included. SelfNever, all possible math. statements
$s \in \mathcal{S}$ consiste of one or more formulas. Proof: sequence of syntactic steps, called derivation or a deduction (step: applying one allowed role). Set of all allowed rules: Calculus.

Syntax, Semantics, Interpretaion, Model
Definition 6.4: The syntax of a logic defines an alphabet Λ (of allowed symbols) and specifies which strings Λ^{*} are formulas.
Definition 6.5: The semantics of a logic defines (among other things, see below) a function free which assigns to each formula $F=\left(f_{1}, f_{2}, \ldots, f_{k}\right) \in \Lambda^{*}$ a subset $\operatorname{free}(F) \subset\{1, \ldots, k\}$ of the indices. If $i \in \operatorname{free}(F)$, then the symbol f_{i} is said to occur free in F.
Definition 6.6: An interpretation consists of a set $\mathcal{Z} \subseteq \Lambda$ of symbols of Λ, a domain (a set of possible values) for each symbol in \mathcal{Z}, and a function that assigns to each symbol in $\underset{\mathcal{Z}}{ }$ a value in its associated domain.
\mathcal{Z} a value in its associated domain.
Definition 6.7: An interpretaion is suitable for a formula F if it assigns a value to all symbols $\beta \in \Lambda$ occuring free in F. Definition 6.8: The semantics of a logic also defines a function σ assigning to each formula F, and each interpretation \mathcal{A} suitable for F, a truth value $\sigma(F, \mathcal{A})$ in $\{0,1\}$. In threatments of logic one often writes $\mathcal{A}(F)$, which is called the truth value of F under interpretation \mathcal{A}.
Definition 6.9: A (suitable) interpretation \mathcal{A} for which a formula F is true is called a model for F, and one also write $\mathcal{A} \vDash F$. For a set M of formulas, a (suitable) interpretation for which all formulas in M are true is called a model for M, $\operatorname{denoted} \mathcal{A} \models M$.

Connection to Proof Systems

Often logic is treated informally, but there are two options to foramlize logic:

- Formulas and interpretations are formas objects. A statement is a pair (F, \mathcal{A}). Then, σ corresponds to τ.
- Formulas are formal objects. Statements only refer to general formula (tautology, (un)satisfiable, logical not necessary. (Usual approach, also here.)

Satisfiability, Taugology, Consequence, Equivalence Definition 6.10: A formula F (or a st M of formulas) is called satisfiable if there exists a model for F (or M), and unsatisfiable otherwise. \perp is used for unsatisfiable formulas. unsatisfiable otherwise. \perp is used for unsatisfiable formulas.
Definition 6.11: A formula F is called a tautology or valid if it is true for every suitable interpretaiton. T is used for a tautology.
Definition 6.12: A formula G is a logical consequence of a formula F (or a set of formulas), denoted $F \models G$ or
$M \models G$ if every interpretation suitable for both F (or M) and G, which is is a model for F (for M), is a model for G. Definition 2.7: $F \not \models G \stackrel{\text { def }}{\Longleftrightarrow}$ all suitable truth assignments to symbols in F, G : value of G must be 1 if value of F is 1 . Definition 6.13: Two formulas F and G are equivalen $(F \equiv G)$, if every interpretation suitable for both F and G yields the same truth value for F and $G: F \equiv G \stackrel{\text { def }}{\Longleftrightarrow}$ $F \mid=G$ and $G \models F$.
Definition 2.6: In propositional logic, formulas $F \equiv G$ if same function (truth values equal for all truth assignments). same function (truth values equal for all truth assignments).
The empty set M correcponds to a tautology The empty set M correcponds to a tautology

$$
\begin{aligned}
& \text { n 6.14: If } F \text { is a tautology, one also write } \\
& \text { The Logical Operators } \wedge, \vee, \text { and } \neg
\end{aligned}
$$

Definition 6.15: If F and G are formulas, then also $\neg F$ Definition 6.15: If F and G are formulas, then also $\neg F$ $(F \wedge G)$ (conjunction), and ($F \vee G$) (disjunction) are for Outer
of associativity can be dropped. $F \rightarrow G$ stands for $\neg F \vee G$ $F \leftrightarrow G$ stands for $(F \wedge G) \vee(\neg F \wedge \neg G)$.
Definition 6.16:

- $\mathcal{A}(F \wedge G)=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=1$ and $\mathcal{A}(G)=1$
- $\mathcal{A}(F \vee G)=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=1$ or $\mathcal{A}(G)=1$
- $\mathcal{A}(\neg F)=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=0$

Lemma 6.1: For any formulas F, G, H :

1. $F \wedge F \equiv F$ and $F \vee F \equiv F$ (idempotence)
2. $F \wedge G \equiv G \wedge F$ and $F \vee G \equiv G \vee F$ (commutativity)
3. $(F \wedge G) \wedge H \equiv F \wedge(G \wedge H)$ and $(F \vee G) \vee H \equiv$ $F \vee(G \vee H)$ (associativity)
4. $F \wedge(F \vee G) \equiv F$ and $F \vee(F \wedge G) \equiv F$ (absorption)
5. $F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H)$ (distributive
law)
6. $F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H)$ (distributive
7. $\stackrel{\text { law) }}{\neg F \equiv F \text { (double negation) }}$
8. $\neg(F \wedge G) \equiv \neg F \vee \neg G$ and $\neg(F \vee G) \equiv \neg F \wedge \neg G$ (de Morgan's rule)
$F \vee \top \equiv \top$ and $F \wedge \top \equiv F$ (tautology rules)
9. $F \vee \top \equiv \top$ and $F \wedge \top \equiv F$ (tautology rules)
10. $F \vee \neg F \equiv$ Т and $F \wedge \neg F \equiv \perp$

Logical Consequence vs. Unsatisfiability

Lemma 6.2 and 2.2: A formula F is a tautology if and only if $\neg F$ is unsatisfiable.
Lemma 6.3 and 2.3: The following three statements are equivalent:

1. $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\} \not \models G$
2. $\left(F_{1} \wedge F_{2} \wedge \ldots \wedge F_{k}\right) \rightarrow G$ is tautology
3. $\left\{F_{1}, F_{2}, \ldots, F_{k}, \neg G\right\}$ is unsatisfiable

Theorem and Theories

Four types of statements.

1. Theorem in an axiomatically defined theory.
2. Statements about a formula/a set of formulas.
3. Statements about a logic (calculus being sound, ...)

For the first: Set T of formulas, formulas called axioms of the theory. Any F with $T \models F$ called theorem in theory T. Extension from Chapter 2
Formulas may be understood as functions. In function tables, one can describe (or define) the value of a formula for all viable interpretations. The concept of function tables is
specially useful for propositional logic, where the domain is finite

logical calculi

Proof of a theorem should be a puely syntactic derivation consisting of simple and easily verifiable steps. Step: Derivation of new syntactic object by application of a derivaion/inference rule
Set of rules for manipulation formulas: Calculus

Hilbert-Style Calculi

Most intuitive type of calculus: Formulas are manipulated. Definition 6.17: A derivation/inference rule is a rule o rderiving a formula from a set of formulas (precondition/premises). We write $\left\{F_{1}, \ldots, F_{k}\right\} \vdash_{R} G$ if G can be derived from the set $\left\{F_{1}, \ldots, F_{k}\right\}$ by rule R.
Derivation purely syntactic concept.
Definition 6.18: The application of a derivation rule R to a set M of formulas means

1. Select a subset N of M.

For the place-holders in R : specify formulas that appear in N such that $N \vdash_{R} G$ for a formula G.
3. Add G to the set $M(M \cup\{G\})$.

Definition 6.19: A (logical) calculus K is a finite ste of derivation rules: $K=\left\{R_{1}, \ldots, R_{m}\right\}$.
Definition 6.20: A derivation of a formula G from offormulas in a calculus K is a finite sequence (of some length n) of applications of rules in K, leading to G. More precisely, we have

- $M_{0}:=M$
$M_{0}:=M$
$M_{i}:=M_{i-1} \cup\left\{G_{i}\right\}$ for $1 \leq i \leq n$, where
$N \vdash_{R_{j}} G_{i}$ for some $N \subseteq M_{i-1}$ and some $R_{j} \in K$, and where
G_{n}
$=G$

We write $M \vdash_{K} G$ if a derivation of G from M exists in K Soundness and Completeness of a Calculus

$$
\begin{aligned}
& \text { Definition } 6.21: \text { A derivation rule } R \text { is correct if for every } \\
& \text { sef } M \text { of formulas and every formula } F \cdot M 上 M 上 F
\end{aligned}
$$

$$
\text { set } M \text { of formulas and every formula } F: M \vdash_{F} \Rightarrow M \models F \text {. }
$$

$$
\begin{aligned}
& \text { Definition 6.22: A calculus } K \text { is sound/correct if for ev- } \\
& \text { ery set } M \text { of formuals and every formula } F: M \vdash{ }_{K} F \stackrel{ }{\Rightarrow}
\end{aligned}
$$

$$
\text { ery set } M \text { of formuals and every formula } F: M \vdash_{K} F=
$$

$$
M \vDash F \text {. And } K \text { is complete if for every } M \text { and } F
$$ $M \models F \Rightarrow M \vdash_{K} F$.

K is sound and complete if $M \vdash_{K} F \Leftrightarrow M \models F$
Derivation from Assumptions
Lemma 6.4: If $\left\{F_{1}, \ldots, F_{k}\right\} \vdash_{K} G$ holds for a sound calculus, then: $\models\left(\left(F_{1} \wedge \ldots \wedge F_{k}\right) \rightarrow G\right)$.
For a given calculus one can also prove new derivation rules. A proof pattern may be captured as a new rule.
connection to Proof Systems
Not relevant.
propositional logic
Syntax
Definition 6.23: An atomic formula is a symbol of the form A_{i} with $i \in \mathbb{N}$. A formula is defined as follows:

- An atomic formula is a formula. formulas

In propositional logic, Semantics
 In propositional log

 Definition 6.24: For a set Z of atomic formulas, an in erpretation \mathcal{A} (called truth assignment) is a function \mathcal{A} : $\longrightarrow\{0,1\} . \mathcal{A}$ is suitable for F if Z contains all atomic $\mathcal{A}(F)=\mathcal{A}\left(A_{i}\right)$ for any atomic formula $F=A_{i}$ and:- $\mathcal{A}((F \wedge G))=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=1$ and $\mathcal{A}(G)=1$
- $\mathcal{A}((F \vee G))=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=1$ or $\mathcal{A}(G)=1$
- $\mathcal{A}(\neg F)=1 \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{A}(F)=0$

Definition 6.25: A literal is an atomic formula or the negatic of an atomic formula. Cinfion 6.26: A formula F is in conjunctive normal form CNF) if it is a conjunction of disjunctions of liters, i.e., if it is of the form $F=\left(L_{11} \vee \ldots \vee L_{1 m_{1}}\right) \wedge \ldots \wedge\left(F_{n 1} \vee \ldots \vee L_{n m_{n}}\right)$ for some literals $L_{i j}$.
Definition 6.27: A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals, i.e., if it is of the form $F=\left(L_{11} \wedge \ldots \wedge L_{1 m_{1}}\right) \vee \ldots \vee\left(L_{n 1} \wedge \ldots \wedge\right.$ $L_{n m_{n}}$).
$\left.L_{n m_{n}}\right)$.
Theorem 6.5: Every formula is equivalent to a formula in CNF to a formula in DNF.
Not a calculus, just some rules. All equivalences (Lemma 6.1 and more) can be stated as rules: $\neg \neg F \vdash F, F \wedge G \vdash G \wedge F$, $\neg(F \vee G) \vdash \neg F \wedge \neg G$. Furthermore:
$: F \wedge G \vdash F$ and $F \wedge G \vdash G$
$:\{F, G\} \vdash F \wedge G$
$:\{F, F \vee G$ and $F \vdash G \vee F$
: $\{F, F \rightarrow G\} \vdash G$
: $\{F \vee G, F \rightarrow H, G \rightarrow H\} \vdash H$
Also: $\vdash F \vee \neg F$ and $\vdash \neg(F \leftrightarrow \neg F)$. The Resolution Calculus for Propositional Logic Used to prove unsatisfiability of a set M of formulas. All formulas must be given in CNF. Work with equivalent objects:
Definition 6.28: A clause is a set of literals.
Definition $6.29^{:}$
formula $F$$\left(L_{11} \vee \ldots\right.$ set of clauses associated to $\left.L_{1 m_{1}}\right) \wedge \ldots \wedge\left(L_{n 1} \vee\right.$ $\left.\ldots \vee L_{n m_{n}}\right)$ in CNF, denoted as $\mathcal{K}(F)$ is the set $\mathcal{K}(F) \stackrel{\text { def }}{=}\left\{\left\{L_{11}, \ldots, L_{1 m_{1}}\right\}, \ldots,\left\{L_{n 1}, \ldots, L_{n m_{n}}\right\}\right\}$. The set of clauses associated with a set $M=\left\{F_{1}, \ldots, F_{k}\right\}$ of formulas is the union of their clauses: $\mathcal{K}(M) \stackrel{\text { def }}{=} \bigcup_{i=1}^{k} \mathcal{K}\left(F_{i}\right)$. Clause is satisfied by an interpretation if some literal evaluates to true. Clauses stand for the disjunction of their literals. $\mathcal{K}(M)$ is satisfied by an interpretation if every clause in $\mathcal{K}(M)$ is satisfied by it. Sets of clauses stand for the con junction of their clauses.
Empty clause unsatisfiable. Empty set of clauses is tautology. Definition 6.30: A clause K is resolvent of clauses K_{1} and $K=\left(K_{1} \backslash\{L\}\right) \cup\left(K_{2} \backslash\{\neg L\}\right)$.
One can not perform two steps at once
The resolution rule: $\left\{K_{1}, K_{2}\right\} \vdash_{\text {res }} K$. The resolution calculus: Res $=\{$ res $\}$.
Lemma 6.6: Resolution calculus is sound: $\mathcal{K} \vdash_{\text {Res }} K \Rightarrow$ $\mathcal{K} \models K$.
Theorem 6.7: A set M of formulas is unsatisfiable if and
only if $\mathcal{K}(M) \vdash$ ses
predicate logic
Syntax
Definition 6.31

- variable symbol is of the form x_{i} with $i \in \mathbb{N}$
- function symbol is of the form $f_{i}^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number of argumets of the function. $k=0$: Constant.
- predicate symbol is of the form $P_{i}^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number of arguments of the predicate.
- term is defined inductively: A variable is a term, and if t_{1}, \ldots, t_{k} are terms, then $f_{i}^{(k)}\left(t_{1}, \ldots, t_{k}\right)$ is a term. $k=0$: no parentheses
- formula is defined inductively:
- For any i and k, if t_{1}, \ldots, t_{k} are terms, then $P_{i}^{(k)}\left(t_{1}, \ldots, t_{k}\right)$ is a (atomic) formula.
- If ${ }^{i} F$ and \dddot{G} are formulas, then $\neg F,(F \wedge G)$,
($F \vee G$) are formulas.
$\exists x_{i} F$ are formulas
\forall is the universal quantifier. \exists is the existential quantifier. One can depict such a formula as a tree. For function symbols (f, g, h) number of arguments usually implicit. For predicate symbols (P, Q, R) number of arguments usually implicit. $x, y, z, u, v, w, k, m, n$ as variable instead of x_{i}

Free Variables and Variable Substitution
De ither bound or free If x ocurs in a sub-)form ormula s either bor $\exists x G$ th. x is bound otherwise fre. For the F is called closed if it contains no free variables. Formula Definition 6.33: Formula F, variable x, term $t: F[x / t]$ denotes the formula obtained from F by substituting every free occurrence of x by t.
In predicate logic, the free symbols fo a formula are all predicate symbols, all function symbols, and al occurrences of free varialbes.
Definition 6.34: An interpretation or structure is a tuple $\mathcal{A}=(U, \phi, \psi, \zeta)$, where

- U is a non-empty universe.
- ϕ is a function assigning to each function symbol (in a certain subset of all function symbols) a function, where for a k-ary function symbol $f, \phi(f)$ is a function $U^{k} \rightarrow U$.
- ψ is a function assigning to each predicate symbol (in a certain subset of all predicate symbols) a function, where for a k-ary predicate symbol $P, \psi(P)$ is a function $U^{k} \rightarrow\{0,1\}$. (implies definition 2.10)
- ζ is a function assigning to each variable symbol (in a certain subset of all variable symbols) a value in U.

Notational convenience: $f^{\mathcal{A}}$ instead of $\phi(f), P^{\mathcal{A}}$ instead of $\psi(P), x^{\mathcal{A}}$ instead of $\zeta(x), U^{\mathcal{A}}$ insetad of U.
Definition 6.35: An interpretation (structure) \mathcal{A} is suitable or a formula F if it defines all function symbols, predicate symbols, and freely occuring variables of F
Definition 6.36: For an interpretation $\mathcal{A}=(U, \phi, \psi, \zeta)$, we define the value (in U) of terms and the truth value of formulas under that structure.

- The value $\mathcal{A}(t)$ of a term t is defined recursively:
- If t is a variable $\left(t=x_{i}\right): \mathcal{A}(t)=\zeta\left(x_{i}\right)$. t_{1}, \ldots, t_{k} and a k-ary function symbol f, then $\mathcal{A}(t)=\phi(f)\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right)$.
- Teh truth value of a formula F is defined recursively by Def. 6.16 and:
- If F is of the form $F=P\left(t_{1}, \ldots, t_{k}\right)$ for terms t_{1}, \ldots, t_{k} and a k-ary predicate symbo P, then $\mathcal{A}(F)=\psi(P)\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right)$.
- If F is of the form $\forall x G$ or $\exists x G$, then $\mathcal{A}[x \rightarrow u]$ for some $u \in U$ be the same structure as \mathcal{A} ,
$\mathcal{A}(\forall x G)=\left\{\begin{array}{c}1, \mathcal{A}_{[x \rightarrow U]}(G)=1 \\ 0, \text { else }\end{array}\right.$

$$
\mathcal{A}(\exists x G)=\left\{\begin{array}{c}
1, \mathcal{A}_{[x \rightarrow U]}(G)=1 \text { for some } u \in U \\
0, \text { else }
\end{array}\right.
$$

This defines $\sigma(F, \mathcal{A})$ of Def. 6.8.

Predicate Logic with Equality

= is usually not usually allowed. But one can extend the syn tax and semantics of predicate logic to include the equality

symbol "=".

Some Basic Equivalences Involving Quantifiers Lemma 6.8: For any formulas $F, G, H(x$ not free in $H)$:

1. $\neg(\forall x F) \equiv \exists x \neg F$
2. $\neg(\exists x F) \equiv \forall x \neg F$
3. $(\forall x F) \wedge(\forall x G) \equiv \forall x(F \wedge G$
4. $(\exists x F) \vee(\exists x G) \equiv \exists x(F \vee G)$
5. $\forall x \forall y F \equiv \forall y \forall x F$
6. $(\forall x F) \wedge H \equiv \forall x(F \wedge H)$
7. $(\forall x F) \vee H \equiv \forall x(F \vee H)$
8. $(\exists x F) \wedge H \equiv \exists x(F \wedge H)$
9. $(\exists x F) \vee H \equiv \exists x(F \vee H)$

Useful rules (2.4.8):

- $\exists x(P(x) \wedge Q(x)) \vDash \exists x P(x) \wedge \exists x Q(x)$
- $\exists y \forall x P(x, y) \models \forall x \exists y P(x, y)$

Lemma 6.9: If one replaces a sub-formula G of a formula F by an equivalent (to G) formula H, then the resulting for mula is equivalent to F.

Substitution of Bound Variables
Lemma 6.10: For a formula G in which y does not occur, we have $\forall x G \equiv \forall y G[x / y]$ and $\exists x G \equiv \exists y G[x / y]$,
Definition 6.37: A formula in which no variable occurs both as a bound and as a free variable and in which all variable appearing after the quatifiers are distinct is said to be in rectified form.
And formula can be expressed in rectified form.
Universal Instantiation
Lemma 6.11: For any formula F and any term t we have $\forall x F \models F[x / t]$.
Definition 6.38: Normal Forms $\underset{A}{\text { formula }}$ of the forrm tifiers and G is $\quad Q_{n} x_{n} G$ where Q_{i} are an prenex form.
heorem 6.12: For every formula there is an equivalent ormula in prenex form
For Skolem normal form one also removes all \exists quantifiers. Then, only equivalence regarding satisfiability is guaranteed

An Example Theorem and its Interpretations
Theorem 6.13: $\neg \exists x \forall y(P(y, x) \leftrightarrow \neg P(y, y))$.
Corollary 6.14: There exists no set that contains all sets S that do not contain themselves. (Russel's paradox.)
Barber paradox
Corollary 6.15: The set $\{0,1\}^{\infty}$ is uncountable
Corollary 6.16: Tehre are uncomputable function $\mathbb{N} \rightarrow$ $\{0,1\}$.
Corollary 6.17: The function $\mathbb{N} \rightarrow\{0,1\}$ assigning to each $y \in \mathbb{N}$ the complement of what programm y outputs on input y, is uncomputable.

beyond predicate logic

Predicate logic is naturally limited. For instance, $\forall x \exists y$ corresponds to the existence of a function f for all x. But in predicatelogic we can not write $\exists f$.
Alternatively, in $\forall w \forall x \exists y \exists z P(w, x, y, z), y, z$ depend on w, x. In predicate logic it can not be expressed that y may only depend on w and z may only depend on x.

Addition

