complex conjugate

Definition imaginary unit: $i=\sqrt{-1}$ is the imaginary unit
Definition complex number: $z=x+y i$ with $x, y \in \mathbb{R}$ Definition complex numbers: $\mathbb{C}=\{x+y i \mid x, y \in \mathbb{R}\}$ Definition imaginary/real part: $\quad \operatorname{Im}(z) \stackrel{ }{\text { D }}=y$ and $\operatorname{Re}(z)=x$
Complex numbers are drawn in the complex plane. The Complex numbers are drawn in the complex plane. The
above described form is called normal form.
polar form
Complex numbers can be described by the polar coordinates
Definition: radius/distance $r:=|z|=\sqrt{z \bar{z}}=$ $\sqrt{x^{2}+y^{2}}$
Definition: angle/argument $\theta:=\operatorname{Arg}(z)=\angle \mathrm{x}$-axis and vector
We have $z=x+i y=r(\cos (\theta)+i \sin (\theta))$.
Definition: Euler formula $e^{i \theta}=\cos \theta+i \sin \theta$
Definition: polar representation $z=r e^{i}$
The polar representation is not unique. Therefore, ofte $\theta \in[0 ; 2 \pi]$. Remember: $e^{i \pi}+1=0$ and $e^{2 i \pi}=1$.
polar and normal form conversion

| $\theta$ | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin \theta$ | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 |
| $\cos \theta$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{1}}{2}$ | 0 |
| $\tan \theta$ | 0 | $\frac{\sqrt{3}}{3}$ | 1 | $\sqrt{3}$ | $\infty$ |

## polar form $\rightarrow$ normal form and $y=r \sin \theta$ <br> $x=r \cos \theta$ and $y=r \sin$ <br> $r=\sqrt{x^{2}+y^{2}}$ normal form $\rightarrow$ polar form

$r=\sqrt{x^{2}+y^{2}}$
For $x, y$ one needs $\cos \theta=\frac{x}{r}, \sin \theta=\frac{y}{r}, \tan \theta=\frac{y}{x}$ Use above table to get $\theta$ or compute arctan with:
$\theta= \begin{cases}\arctan \frac{y}{x} & \text { falls } z \text { im 1. Quadranten oder auf } \\ \text { der positiven } x \text {-Achse liegt } \\ \frac{\pi}{2} & \text { falls } x=0 \text { und } y>0 \\ \pi+\arctan \frac{y}{x} & \text { falls } z \text { im 2. oder 3. Quadranten li } \\ \frac{3 \pi}{2} & \text { falls } x=0 \text { und } y<0 \\ 2 \pi+\arctan \frac{y}{x} & \text { falls } z \text { im 4. Quadranten liegt }\end{cases}$

| calculating with $\mathbb{C}$ |
| :--- |
| $z=x+i y=r e^{i \theta}$ and $w=z+i v=b e^{i \alpha}$ and $\alpha \in \mathbb{R}$ |
| $\quad$ Addition |
| $z+w:=(x+z)+(y+v) i$ |
| $\quad$ Multiplication |
| $\alpha \cdot z:=\alpha x+\alpha y i=\alpha r e^{i \theta}$ <br> $w \cdot z:=u x-v y+i(v x+u y)=, z \cdot w:=r e^{i \theta} b e^{i \alpha}=$ <br> $r b e^{i(\theta+\alpha)}$ |

## $\bar{z}:=x-i y$ and notice that $z \bar{z}=x^{2}+y^{2} \geq 0$. <br> absolute value

$|z|:=\sqrt{z \bar{z}}$
normal form: $\frac{z}{w}=\frac{z}{w} \cdot \frac{\text { division }}{\frac{w}{w}}=\frac{z \bar{w}}{|w|^{2}}$
polar form: $\underline{z}=\underline{r} e^{i(\theta-\alpha)}$
${ }^{w}$ further computation rules

- $\frac{\overline{z w}}{z}=\bar{z} \cdot \bar{z}$
- $\frac{z}{\bar{w}}=\frac{\bar{z}}{\bar{w}}$
- $\frac{\bar{z}}{}=z$
- $\begin{aligned} & z=z|=|\bar{z}| \\ & \bullet \\ & z w|=|z|\end{aligned}$
- $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$
- $|z+w| \stackrel{w}{\leq}|z|+|w|$ (triangle inequality)


## subsets of $\mathbb{C}$ in the complex plane

$|z-i|=1$ is the unit circle around $i$.
potentiation
$z^{x}=r^{x} e^{x i \theta}$

## roots

$a \in \mathbb{C}, n \in \mathbb{N}$. If $n \neq 0$, there are $n$ roots of $a$. $n$-th roots of $a$ are $z \in \mathbb{C}$ with $z^{n}=a$. Thus, $z^{n}=r^{n} e^{i n \theta}=a=s e^{i \alpha}$.
$z^{n}=r^{n} e^{n}=a=s e^{=}$
We get $r=\sqrt[n]{s} . n \theta=\alpha+2 \pi k \Rightarrow \theta=\frac{\alpha+2 \pi k}{n}, k \in \mathbb{Z}$.

## Systems of Linear Equations (SLEs)

Definition: SLE A SLE with $m$ linear equations in $n$ unkowns has coefficients $a_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$ and the right-hand side $b_{i}(1 \leq j \leq m)$ and the unkowns $x_{1}, \ldots, x_{n}$. If $m=n$ the system is square.
A SLE can be written in elimination scheme or with the coefficient matrix $\mathbf{A}$, unknown vector $\mathbf{x}$, and right-hand side $\mathbf{b}: \mathbf{A x}=\mathbf{b}$.
Definition: solution A solution of a SLE is a $n$-tupel validating all equations. The general solution is the set of all solutions. If a SLE has no solution, it is called inconsistent/unsolvable. If there is exactly one solutoin, it is called uniquely solvable. If there is more than one it is called uniquely solvable. If there is n
solution, it is called ambiguously solvable
solution, it is called ambiguously solvable.
Definition: equivalence SLEs with same solutions are Definition:
Definition: homogenous system A SLE with 0 right
Definition: homogenous system A SLE with 0 right hand side.
Idea: Transform a SLE in an equivalent but easier to solvable system
forward elimination
We transform the SLE with elementary row operations to row echelon form, which is easy to solve with back substitution.
Definition: elementary row operations (i) swithcing rows, (ii) adding multiple of rows to other rows, and not necessarily (iii) multiplying a row with a non-zero real number.
Definition: row echelon form For the first non-zero element in each row (called pivot element), all elements below that must be zero and all rows above must have such an element left from the current column. Upper
triangular form is a special case for certain $n=m$ matrices.

## back substitution

One identifies the last pivot varialbe and substitutes it to the previous equation. From the second last equation one identifies the second last pirvot variable and substione identifies the second last pirvot variable and substi-
tutes it to the previos equation. And so on. Free varitutes it to the previos equation. And so on. Free vari-
ables (columns without pivots) are assigned a variable.

## procedure (general case)

No deails here, obvious. If $m>r$, the conditions for a solution $c_{r+1}=\ldots=c_{m}=0$ are called consistency conditions. In a homogenous system, consistency conditions are always met.

## solution set of a SLE

Definition: rank rank of $\mathbf{A}$ is number of pivot elements
Theorem: 1.1 A SLE in row echelon form has at least one solution if: $r=m$ or $r<m$ and consistency conditions met.
If solutions exist: unique if $r=n,(n-r)$-parameter based if $r<n$.
Corollary: 1.2 The rank $r$ only depends on the coefficient matrix A but not on the chosen pivot elements or the right-hand side $\mathbf{b}$.
The solution $x_{1}=\ldots=x_{n}=0$ is called the trivial solution.
Corollary: An homogenous SLE always has the trivial solution. If $r<n$ it has non-trivial ones too.
1.5

Corollary: 1.6 A squared SLE is solvable for any right hand side if and only if the homogenous system only has the trivial solution.
Definition: regular/singular If a SLE has a unique solution, it is regular/non-singular. Otherwise it is singular. $\mathbf{A x}=\mathbf{b}$ has a solution if and only if $\mathbf{b}$ is a linear com binatin of column vectors of $\mathbf{A}$.

## Matrices and Vectors in $\mathbb{R}^{n}$ and $\mathbb{C}^{n}$

## Matrices, row-/column vectors

Definition: A $m \times n$ matrix $\mathbf{A}$ is a rectangular scheme of $m n$ elements in $m$ rows and $n$ columns. The element in row $i$, column $j$ is $a_{i j}=(\mathbf{A})_{i j} . \mathbf{A}=\left(a_{i j}\right)$.
Definition: square matrices $n \times n$ matrix - with order $n$ Definition: null/zero matrix $a_{i j}=0$ - denoted O Definition: diagonal elements $a_{j j} \quad(j=$ $1, \ldots, \min (n, m))$ are diagonal elements. Their set is the (main) diagonal of $\mathbf{A}$.
Definition: diagonal matrix $(\mathbf{A})_{i j}=0, i \neq j$ with $\mathbf{D}=\operatorname{diag}\left(d_{11}, \ldots, d_{n n}\right)$
Definition: unit matrix/identity $\mathbf{I}_{n}=\operatorname{diag}(1,1, \ldots, 1)$ Definition: upper triangular matrix $(\mathbf{R})_{i j}=0, i>j$ Definition: upper triangular matrix $(\mathbf{R})_{i j}=0, i>j$
Definition: lower triangular matrix $(\mathbf{L})_{i j}=0, i<j$ Definition: vector $m \times 1$ : column-vector \& $1 \times n$ : row vector The set
calculating with matrices

## A a $m \times n$ matrix $\& \mathbf{B}$ a $m \times n$ matrix $\& \alpha$ a scalar

 Definition: scalar multiplication $(\alpha \mathbf{A})_{i j}: \equiv \alpha(\mathbf{A})_{i j}$ $1 \leq i \leq m, 1 \leq j \leq n$Definition: addition $(\mathbf{A}+\mathbf{B})_{i j}: \equiv(\mathbf{A})_{i j}+(\mathbf{B})_{i j}$ $1 \leq i \leq m, 1 \leq j \leq n$ (only for same-sized matrices!)

Now, A a $m \times n$ matrix \& B a $n \times p$ matrix Definition: multiplication $(\mathbf{A B})_{i j}$ $\sum^{n}(\mathbf{A})_{i k}(\mathbf{B})_{k j}$ - the dimension of the $:=$ is $m \times p$. (only for suitable-sized matrices!)
Theorem: 2.1

- $(\alpha \beta) \mathbf{A}=\alpha(\beta \mathbf{A})$
- $\alpha \mathbf{A}) \mathbf{B}=\alpha(\mathbf{A B})=\mathbf{A}(\alpha \mathbf{B})$
$\begin{aligned} \bullet(\alpha+\beta) \mathbf{A} & =(\alpha \mathbf{A})+(\beta \mathbf{A}) \\ \cdot \alpha(\mathbf{A}+\mathbf{B}) & =(\alpha \mathbf{A})+(\alpha \mathbf{B})\end{aligned}$
- $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
- $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$
- $(\mathbf{A}+\mathbf{B}) \mathbf{C}=(\mathbf{A C})+(\mathbf{B C})$
$(\mathbf{A B})+(\mathbf{A C})(\mathbf{A B})+(\mathbf{A C}) \mathbf{A}(\mathbf{B}+\mathbf{C}$
$(\mathbf{A B})+(\mathbf{A C})$
Theorem: 2.2 neutral matrix exists, inverse matrix exists, 'difference' matrix exists
Theorem: 2.3/.4 $\mathbf{A}_{n \times m}=\left(\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right)$ and $\mathbf{x}_{n \times 1}$ $\mathbf{A x}=\mathbf{a}_{1} x_{1}+\ldots+\mathbf{a}_{n} x_{n} . \mathbf{A} \mathbf{e}_{j}=\mathbf{a}_{j}$. With $\mathbf{B}_{m \times p}=$ $\mathbf{A x}=\mathbf{a}_{1} x_{1}+\ldots+\mathbf{a}_{n} x_{n} . \mathbf{A e}_{j}=\mathbf{a}_{j}$. .
$\left(\begin{array}{llll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{p}\end{array}\right): \mathbf{A B}=\left(\begin{array}{lll}\mathbf{A} \mathbf{b}_{1} & \ldots & \mathbf{B} \\ m \times p\end{array}\right.$ with addition: commutative group \& with multiplicawith addition: commutative group \& with
tion: non-commutative ring with identity
tion: non-commutative ring with identity Definition: linear combination A linear combination of
$\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ is $\alpha_{1} \mathbf{a}_{1}+\ldots+\alpha_{n} \mathbf{a}_{n}$ with $\alpha_{1}, \ldots, \alpha_{n}$ as $\underset{\text { and }}{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}}$ is $\alpha_{1} \mathbf{a}_{1}+\ldots+\alpha_{n} \mathbf{a}_{n}$ with $\alpha_{1}, \ldots, \alpha_{n}$ as
symetric/hermitian matrices $\&$ transpose
Definition: $\quad \mathbf{A}_{n \times m} . \mathbf{A}_{m \times n}^{\top}$ with $\left(\mathbf{A}^{\top}\right)_{i j}: \equiv(\mathbf{A})_{j i}$ is called transpose. $\overline{\mathbf{A}}_{m \times n}$ with $(\overline{\mathbf{A}})_{i j}: \equiv \overline{(\mathbf{A})_{i j}}$ is called complex conjugate for complex A. $\mathbf{A}^{H}: \equiv(\overline{\mathbf{A}})^{\top}=$ $\mathbf{A}^{\top}$ is called conjugate/hermitian transpose.
Definition: symmetry $\mathbf{A}$ is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$. We say it is skew-symmetric if $\mathbf{A}^{\top}=-\mathbf{A}$.
Definition: hermitian $\mathbf{A}$ is hermitian if $\mathbf{A}^{H}=\mathbf{A}$.
Theorem: $2.6\left(\mathbf{A}^{H}\right)^{H}=\mathbf{A} \&(\alpha \mathbf{A})^{H}=\bar{\alpha} \mathbf{A}^{H} \&$ $(\mathbf{A}+\mathbf{B})^{H}=\mathbf{A}^{H}+\mathbf{B}^{H} \&(\mathbf{A B})^{H}=\mathbf{B}^{H} \mathbf{A}^{H}$. Theorem: $2.7 \mathbf{A}, \mathbf{B}$ (square) symmetric: $\mathbf{A B}=\mathbf{B A}$ $\& \mathbf{A}^{H} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{H}$ are symmetric (for arbitrary $\mathbf{A}$ ) Corollary: $2.8 \mathbf{A}_{m \times n}, \mathbf{B}_{n \times p}, \underline{\mathbf{y}}=d\left(y_{1} \ldots y_{n}\right): \underline{\mathbf{y}} \mathbf{B}=$
$y_{1} \underline{\mathbf{b}_{1}}+\ldots+y_{n} \underline{\mathbf{b}_{n}}-e_{i}^{\top} \mathbf{B}=\underline{\mathbf{b}_{i}}$. And $\mathbf{A B}=$
scalar product, norm, lenth, angles
See at later/generalized section. Chapter 2.4 just instanciation
outer product, orthogonal projections on a line See at later/generalized section. Chapter 2.4 just instanciation.


## matrices as linear maps

$\mathbf{A}_{m \times n}$ defines map: $\mathbf{A}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{m}, \mathbf{x} \mapsto \mathbf{A x}$. We
have characteristics: $\mathbf{A}(\gamma \mathbf{x}+\tilde{\mathbf{x}})=\gamma(\mathbf{A x})+(\mathbf{A} \tilde{\mathbf{x}})$.
Definition: The above is characteristic for linear maps
Definition: The above is characteristic for is $\mathbb{E}^{n}$. The codomain is $\mathbb{E}^{m}$
Definition: image $\operatorname{im} \mathbf{A}: \equiv\left\{\mathbf{A} \mathbf{x} \in \mathbb{E}^{m} ; \mathbf{x} \in \mathbb{E}^{n}\right\}$
Definition: image $\operatorname{im} \mathbf{A}: \equiv\left\{\mathbf{A x} \in \mathbb{E}^{m} ; \mathbf{x} \in \mathbb{E}^{n}\right\}$
Definition: kernel ker $\mathbf{A}:=\left\{\mathbf{x} \in \mathbb{E}^{n} \mid \mathbf{A x}=\mathbf{0}\right\}$

## inverse of a matrix

Definition: ivertibility $\mathbf{A}_{n \times n}$ is invertible if some $\mathbf{X}_{n \times n}$ exists so that $\mathbf{A X}=\mathbf{I}=\mathbf{X A} . \mathbf{X}$ is denoted $\mathbf{A}^{-1}$ as inverse of $\mathbf{A}$.
Theorem: $2.16 \mathbf{A}$ invertible $\rightarrow \mathbf{A}^{-1}$ is unique
Theorem: $2.17 \mathbf{A}_{n \times n}: \mathbf{A}$ is invertible if $\operatorname{rank} A=n$ \& more

Theorem: $2.18 \mathbf{A}_{n \times n}$ and $\mathbf{B}_{n \times n}$ regular: $\mathbf{A}^{-1}$ regular and $\left(\mathbf{A}^{-1}\right)^{-1}=A . \mathbf{A B}$ is regular and $(\mathbf{A B})^{-1}=$ $\mathbf{B}^{-1} \mathbf{A}^{-1} . \mathbf{A}^{H}$ regular and $\left(\mathbf{A}^{H}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{H}$.
We may compute $\mathbf{A}^{-1}$ if exists by solving $\mathbf{A X}=\mathbf{I}$ Instead of $\mathbf{X}$ and $\mathbf{I}$ we may also choose the identity column vectors and $\mathbf{x}$.
orthogonal/unitary matrices Definition: unitary/orthogonal $\mathbf{A}_{n \times n}$ is unitary it $\mathbf{A}^{H} \mathbf{A}=\mathbf{I}_{n}$. It is orthogonal if $\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}$. Notice, for $\mathbf{A}_{n \times m}$, we only have $\mathbf{A}^{H} \mathbf{A}=\mathbf{I}$ for unitary columns. We only have $\mathbf{A} \mathbf{A}^{H}=\mathbf{I}$ if $n=m$. Definition: $\mathbf{A} \in \mathbb{E}^{n \times n}$ is normal $\Leftrightarrow \mathbf{A}^{H} \mathbf{A}=\mathbf{A} \mathbf{A}^{H}$. Theorem: $2.20 \mathbf{A}, \mathbf{B} \in \mathbb{E}^{n \times n}$ unitary/orthogonal: $\mathbf{A}$ regular and $\mathbf{A}^{-1}=\mathbf{A}^{H} . \mathbf{A} \mathbf{A}^{H}=\mathbf{I}_{n} . \mathbf{A}^{-1}$ is unitary. $\mathbf{A B}$ is unitary
Lemma: $\mathbf{A} \in \mathbb{E}^{m \times n} . \mathbf{A}^{H} \mathbf{A} \in \mathbb{E}^{n \times n}$ is hermititan and positiv semidefinit.
Theorem: $2.21 \mathbf{A}_{n \times n}$ unitary/orthogonal: linear map of $\mathbf{A}$ is length preserving (isometric) and angle preserv ing: $\|A x\|=\|x\|,\langle A x, A y\rangle=\langle x, y\rangle$
structured matrices
Apparently not relevant. (Only in script.

## LU decomposition

## Gauss elimination as LU decomposition

Regular A. Gauss elimination $\rightsquigarrow \mathbf{U}$ (upper triangula matrix - row echelon form). For $L$ we have the coeffi cients during Gauss elimination (only subtracting rows) The diagonal of $\mathbf{L}$ has only 1 s. We have $\mathbf{A}=\mathbf{L} \mathbf{U}-\mathbf{L} \mathbf{U}$ decomposition.
Row changes necessary: $\mathbf{P}$ corresponding permutation matrix. Then: $\mathbf{P A}=\mathbf{L} \mathbf{U}$. If not row changes: $\mathbf{P}=\mathbf{I}$. Theorem: 3.1 Square SLE $\mathbf{A x}=\mathbf{b}$ with regular $\mathbf{A}$ : $\mathbf{P A}=\mathbf{L R}, \mathbf{L} \mathbf{c}=\mathbf{P b}, \mathbf{R x}=\mathbf{c}$. Then, $\mathbf{x}$ for some $\mathbf{A}$ may be easily computed for various $\mathbf{b}$.
Solving for some $\mathbf{x}: \mathbf{A x}=\mathbf{b} \Rightarrow \mathbf{P A x}=\mathbf{P b} \Rightarrow$ $\mathbf{L U x}=\mathbf{P b}$. Solve for $\mathbf{c}$ first: $\mathbf{L}=\mathbf{P b}$ (forward substitution). Solve for $\mathbf{x}$ second: $\mathbf{U x}=\mathbf{c}$ (backward substitution).

## general case

Theorem: 3.3 Ax $=\mathbf{b}$ a $m \times n$ SLE: $\mathbf{P}_{m \times m}, \mathbf{R}_{m \times n}$,
$\mathbf{L}_{m \times m}$
Corollary: $3.4 \mathbf{A}_{m \times n}$ with $r a n k \mathbf{A}=r: \tilde{\mathbf{L}}_{m \times r}$ and $\tilde{\mathbf{U}}_{r \times n}$ and $\mathbf{P}_{m \times m}$ with $\tilde{\mathbf{L}} \tilde{\mathbf{U}}=\mathbf{P A}$.
block LU decomposition \& LU updating Not done

Not done.
Cholesky decomposition

## vector spaces

## Definition: Vectorspace (aslo linear space) $V$ ove $\mathbb{E}(: \equiv \mathbb{R}$ or $\mathbb{C}):$ not empty set with addition $x, y \in$ $V \mapsto x+y \in V$ (inner operation) and multiplication $\alpha \in \mathbb{E}, x \in V \mapsto \alpha x \in V$ (outer operation) as well as eight axioms:

1. $x+y=y+x(\forall x, y \in V)$
2. $(x+y=y+x(\forall x, y \in V)+z=x+(y+z)(\forall x, y, z \in V)$
3. $\exists o \in V: x+o=x(\forall x \in V)$
4. $\forall x \in V \exists-x \in V: x+(-x)=o$
5. $\alpha(x+y)=\alpha x+\alpha y(\forall \alpha \in \mathbb{E}, \forall x, y \in V)$
6. $(\alpha+\beta) x=\alpha x+\beta x(\forall \alpha \in \mathbb{E}, \forall x, y \in V)$
7. $(\alpha \beta) x=\alpha(\beta x)(\forall \alpha \in \mathbb{E}, \forall x, y \in V)$
commutative group regarding addition i (first four axioms)
Elements of $V$ : vectors. $o \in V$ : zero vector. Elements of $\mathbb{E}$ : scalars.
For $\mathbb{E}=\mathbb{R}$ : real vector space. For $\mathbb{E}=\mathbb{C}$ : complex vector space.
Theorem 4.1: $\quad V$ over $\mathbb{E} . \forall x, y \in V$ and $\forall \alpha \in \mathbb{E}$ :
$0 x=o, \alpha o=o, \alpha x=o \Rightarrow \alpha=0 \vee x=0,(-\alpha) x=$ $\alpha(-x)=-(\alpha x)$.
Theorem 4.2: $\forall x, y \in V \exists z \in V: x+z=y(z$ unique)
Definition subtraction: $V . \forall x, y \in V: y-x: \equiv$ $y+(-x)$.
Among others, those are vector spaces: vectors, matrices, continuous real functions, polynomials, real sequences

## subspaces, spanning systems

Definition: $\varnothing \neq U \subseteq V$ subspace of $V$ if closed under addition and scalar multiplication: $x+y \in U, \alpha x \in U$ $(\forall x, y \in U, \forall \alpha \in \mathbb{E})$.
Theorem 4.3: A subspace is a vector space itself.
$U_{1}, \ldots, U_{n}$ subspaces over $\mathbb{K}$. Then, $U_{1}+\ldots+U_{2}:=$
$\left\{\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \mid \alpha_{i} \in \mathbb{R}, x_{i} \in U_{i}\right\}$ is a vector space.
Theorem 4.4: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathcal{L}_{0}$ solution set for $\mathbf{x} \in \mathbb{R}^{n}$ for $\mathbf{A x}=o: \mathcal{L}_{0}$ subspace of $\mathbb{R}^{n}$
Definition linear combination: $V$ over $\mathbb{E} . a_{1}, \ldots, a_{l} \in$
$x$.
$x: \equiv \gamma_{1} a_{1}+\ldots+\gamma_{l} a_{l}=\sum_{k=1}^{l} \gamma_{k} a_{k}$ with $\gamma_{1}, \ldots, \gamma_{l} \in$ $\mathbb{E}$ is linear combination of $a_{1}, \ldots, a_{l}$.
Definition span: Set of all linear combinations of $a_{1}, \ldots, a_{l}$ is the subspace spanned by $a_{1}, \ldots, a_{l}$ :
$\operatorname{span}\left\{a_{1}, \ldots, a_{l}\right\}: \equiv\left\{\sum_{k=1}^{l} \gamma_{k} a_{k} ; \gamma_{1}, \ldots, \gamma_{l} \in \mathbb{E}\right\}$
Infinite sequence $S$ or $S \subset \overline{\bar{V}} \bar{V}$ :
$\operatorname{span} S: \equiv\left\{\sum_{k=1}^{m} \gamma_{k} a_{k} ; m \in \mathbb{N} ; a_{1}, \ldots, a_{m} \in\right.$ $\left.S ; \gamma_{1}, \ldots, \gamma_{m} \in \mathbb{E}\right\}$
$a_{1}, \ldots, a_{l}$ or $S$ is called spaning set of the span.
linear dependence, bases, dimensions
Definition linear dependence: $a_{1}, \ldots, a_{l} \in V$ linearly dependent if $\gamma_{1}, \ldots, \gamma_{l} \in \mathbb{E}$ not all zero: $\gamma_{1} a_{1}+\ldots+$ $\gamma_{l} a_{l}=o$. But if $\gamma_{1}=\ldots=\gamma_{l}=0$, then linearly dependent.
Lemma 4.5: $\quad l \geq 2: a_{1}, \ldots, a_{l}$ linearly dependent $\Leftrightarrow$ one vector linear combination of others
Definition linear dpendence: Infinite set of vectors lin early independent $\Leftrightarrow$ each subset linearly independent. Definition basis: Linearly independent spanning set of $V$ is called basis of $V$
$n$ columns $b_{1}, \ldots, b_{n} \in \mathbb{E}^{n}$ of $\mathbf{B}_{n \times n}$ basis of $\mathbb{E}^{n} \Leftrightarrow \mathbf{B}$ regular.
NOW: VECTOR SPACES WITH FINITE SPANNING SETS

Lemma 4.6: Finite spanning set of non-trivial $V \Leftrightarrow$ basis as subset of spanning set exist

Lemma: 4.7 $V$ with finite spanning set: all bases of $V$ same number of vectors.
Definition: Number of basis vectors (in each basis) of $V$ with finite spanning set is called dimension of $V$ : $\operatorname{dim} V$. Such $V$ is finite-dimensional. For $\operatorname{dim} V=n$ $V$ is called $n$-dimensional.
Lemma: 4.8 If $\left\{b_{1}, \ldots, b_{m}\right\}$ spans $V$ : Every set $\left\{a_{1}, \ldots, a_{l}\right\} \subset V$ of $l>m$ vectors is linearly dependent.
Lemma: 4.9/.11 Every set of linearly independent vectors from $V$ with finite spanning set can be extended to a basis of $V$.
Corollary: 4.10 V with finite dimension: All sets of $n=\operatorname{dim} V$ linearly independent vectors are a basis of $V$.
Theorem: $4.12\left\{b_{1}, \ldots, b_{n}\right\} \subset V$ is basis of $V$ if and only if $\forall x \in V x=\sum_{k=1}^{n} \zeta_{k} b_{k}$ for unique $\zeta_{k}$.
Definition: cooridnates $\zeta_{k}$ for $x$ are called coordinates of $x$ regarding basis $\left\{b_{1}, \ldots, b_{n}\right\} . \zeta=\left(\begin{array}{lll}\zeta_{1} & \ldots & \zeta_{n}\end{array}\right)^{\top}$ is called coordinate vector. $x=\sum_{k=1}^{n} \zeta_{k} b_{k}$ is called representation in coordinates of $x$.
Definition: complementary subspaces Subspaces $U$ and $U^{\prime}$ of $V$ with $\forall x \in V: x=u+u^{\prime}$ with $u \in U, u^{\prime} \in U^{\prime}$ are called complementary (subspaces of $V$ ). $V$ then is direct sum: $V=U \oplus U^{\prime}$.

## basis change, coordinate transformation

 $\left\{b_{1}, \ldots, b_{n}\right\}$ 'old' basis of $V .\left\{b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right\}$ 'new' basis ofDefinition: $\quad b_{k}^{\prime}=\sum_{i=1}^{k} \tau_{i k} b_{i}, k=1, \ldots, n . \mathbf{T}_{n \times n}=$ $\left(\tau_{i k}\right)$ is transformation matrix of change of basis.
In $k$-th column of $\mathbf{T}$ : coordinates of $k$-th new basisvec tor regarding 'old' basis.
Theorem: $4.13 x \in V . \zeta=\left(\begin{array}{lll}\zeta_{1} & \ldots & \zeta_{n}\end{array}\right)^{\top}$ cooridnate vector 'old' basis. $\zeta^{\prime}=\left(\begin{array}{lll}\zeta_{1}^{\prime} & \ldots & \zeta_{n}^{\prime}\end{array}\right)^{\top}$ cooridnate vector 'new' basis. $\sum_{i=1}^{n} \zeta_{i} b_{i}=x=\sum_{k=1}^{n} \zeta_{k}^{\prime} b_{k}^{\prime}$. Then: $\zeta_{i}=\sum_{k=1}^{n} \tau_{i k} \zeta_{k}^{\prime}$ or rather $\zeta=\mathbf{T} \zeta^{\prime}$. Because $\mathbf{T}$ regular: $\zeta^{\prime}=\mathbf{T}^{-1} \zeta$.

## linear maps

For maps generally:
Definition: image/range $F: X \rightarrow Y . F(x)$ is the range/image of $F: F(X)=\operatorname{im} F: \equiv\{\dot{F}(x) \in Y \mid x \in$

## $X\} \subset Y$

Definition: surjectivity If $F(X)=Y$, then $F$ is on $Y$ : surjective.
Definition: injectivity $F(x)=F\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$ : injective (one-to-one)
Definition: bijectivity If surjective and injective: bijective. If $F$ bijective, the inverse map $F^{-1}$ is defined.

## definition, matrix representation

Definition: $F: X \rightarrow Y, x \mapsto F x(X$ and $Y$ vector spaces over $\mathbb{E}$ ) is called linear if $\forall x, \tilde{x} \in X$ and $\forall \gamma, \beta \in \mathbb{E}: F(\beta x+\gamma \tilde{x})=\beta F x+\gamma F \tilde{x}:$

- $F(x+\tilde{x})=F x+F \tilde{x}$
- $F(\gamma x)=\gamma(F x)$
$X$ is domain, $Y$ is image space/codomain.
If $X=Y$ one has a self-map. If $Y=\mathbb{E}, F$ is called linear functional. If $X$ and $Y$ function spaces, $F$ is called linear operator
Examples are evaluation map, differential operator, multiplication operator.
iplication $F: X \rightarrow Y$ dim $X=n$ and $M=m$ Arbitrary $F: X \rightarrow Y . \operatorname{dim} X=n$ and $\operatorname{dim} Y=m$. $\left\{b_{1}, \ldots, b_{n}\right\}$ basis of $X .\left\{c_{1}, \ldots, c_{m}\right\}$ basis of $Y$
Definition: Images of basis of $X\left(F b_{l} \in Y\right)$ as linear combination of $c_{k}: F b_{l}=\sum_{k=1}^{m} a_{k l} c_{k}, l=1, \ldots, n$. $\mathbf{A}_{m \times n}=\left(a_{k l}\right)$ is called matrix for $F$ relative to the given bases in $X$ and $Y$
Notice, $l$-th column of $\mathbf{A}$ : cooridnates of image of $l$-th basis vector of $X$ relative to chosen basis of $Y$
Also, to every $\mathbf{A} \in \mathbb{E}^{m \times n}$ corresponds a unique $F$ for given bases.
IMPORTANT: We have $\eta=\mathbf{A} \zeta$ (neu=Aalt)
Definition isomorphism: If $F: X \rightarrow Y$ is (eineindeutig), it is an isomorphism. If also $X=Y$ : automorphism:
Lemma: 5.1 $F: X \rightarrow Y$ isomorphism $\Rightarrow F^{-1}: Y \rightarrow$ $X$ also linear and isomorphism.
Definition coordinate mapping: $\kappa_{X}: X \rightarrow \mathbb{E}^{n}, x \mapsto \zeta$ is bijective and linear, thus an isomorphism. It assigns each $x \in X$, its coordinate vector regarding some basis Bach
This
This commutative diagram helps:

| $x \in X$ | $G \circ F$ |  |  | $z \in Z$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\underset{F}{ }$ | $y \in Y$ | $\xrightarrow[G]{\longrightarrow}$ |  |
| $\kappa_{X} \downarrow \mid \kappa_{X}^{-1}$ |  | $\kappa_{Y} \downarrow \mid \kappa_{Y}^{-1}$ |  | $\kappa_{Z} \downarrow \mid \kappa_{Z}^{-1}$ |
| $\boldsymbol{\xi} \in \mathbb{E}^{n}$ | $\xrightarrow{\text { A }}$ | $\boldsymbol{\eta} \in \mathbb{E}^{m}$ | $\xrightarrow{\text { B }}$ | $\zeta \in \mathbb{E}^{p}$ |

Corollary 5.2: $\quad F$ ismorphism. For fixed bases as A. Then, A regular and inverse map $F^{-1}$ and $\mathbf{A}^{-1}$
Theorem 5.3: $X, Y, Z$ vector spaces over $\mathbb{E} . F: X \rightarrow$ $Y$ and $G: Y \rightarrow Z$ linear. Then, $G \circ F: X \rightarrow Z$ also linear. If A, B map matrices for fixed bases i $X, Y, Z$ for $F, G$. Then for $G \circ F: \mathbf{B A}$.

## kernel, image, rank

$F: X \rightarrow Y$, $\operatorname{dim} X=n, \operatorname{dim} Y=m$
Definition : kernel of $F$ - ker $F$ - is inverse image of $o \in Y:$ ker $F: \equiv\{x \in X ; F x=o\} \subseteq X$
Lemma 5.4: $\dot{k e r} F$ is subspace of $\bar{X}$. im $F$ is sub space of $Y$.
Lemma 5.5: $U$ subspace of $X \Rightarrow F U$ subspace of $Y$ \&\& $W$ subpsace of $i m F \Rightarrow F^{-1} W$ subspace of $W$.

- $\operatorname{ker} \mathbf{A}=$ general solution of the homogenous SLE Ax $=\mathbf{o}$
- $\operatorname{im} \mathbf{A}=$ set of right-hand sides $\mathbf{b}$ for which $\mathbf{A x}=\mathbf{b}$ has solution.

Theorem 5.6: $\quad F$ is injective if and only if $k e r \quad F=$ $\{o\}$.
Theorem 5.7 - dimension formula: Assuming
$\operatorname{dim} X<\infty: \operatorname{dim} X-\operatorname{dim} \operatorname{ker} F=\operatorname{dim} \operatorname{im} F$.

Definition rank: rank of linear map $F$ is dimension of image of $F: \operatorname{rank} F: \equiv \operatorname{dim} \operatorname{im} F$
Corollary 5.8

1. $F: X \rightarrow Y$ injective $\Leftrightarrow \operatorname{rank} F=\operatorname{dim} X$
2. $F \cdot \dot{\operatorname{ran}} \underset{F}{X}=\overrightarrow{\operatorname{dim}} X=\operatorname{dim} Y$ (isomophism) $\Leftrightarrow$
3. $F: X \rightarrow X$ bijective (automorphism) $\Leftrightarrow$ $\operatorname{rank} F=\operatorname{dim} X$
Definition: Two vector spaces are called isomorph if an isomorphism $F: X \rightarrow Y$ exists.
Theorem 5.9: Two vector spaces with finite dimension are isomorph if and only if they have the same dimension.
Corollary 5.10: $F: X \rightarrow Y, G: Y \rightarrow Z$ linear maps with $\operatorname{dim} X, \operatorname{dim} Y<\infty$.
4. $\operatorname{rank} F G \leq \min \{\operatorname{rank} F \operatorname{rank} G\}$
5. $G$ injective $\Rightarrow \operatorname{rank} G F=\operatorname{rank} F$
6. $F$ surjective $\Rightarrow \operatorname{rank} G F=\operatorname{rank} G$

## matrices as linear maps <br> $\mathbf{A}=\left(a_{k l}\right), m \times n$ matrix, $n$ columns: $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.

 $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}-$ is called column space or range of $\mathbf{A}$. The solution space $\mathcal{L}_{0}$ of the homogenous SLE $\mathbf{A x}=\mathbf{o}$ is called nullspace of $\mathbf{A}: \mathcal{N}(\mathbf{A})$Theorem 5.11: If $\mathbf{A}$ is understood as a linear map:
im $\mathbf{A}=\mathcal{R}(\mathbf{A})$ and $\operatorname{ker} \mathbf{A}=\mathcal{N}(\mathbf{A})$. $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a $\operatorname{im} \mathbf{A}=\mathcal{R}(\mathbf{A})$ and $\operatorname{ker} \mathbf{A}=\mathcal{N}(\mathbf{A}) . \mathbf{A x}=\mathbf{b}$ has a solution if and only if $b \in \mathcal{R}(\mathbf{A})$. A solution is unique if and only if $\mathcal{N}(\mathbf{A})=\{\mathbf{o}\}$. Theorem 5.12: $\operatorname{dim}^{\mathcal{L}} \mathcal{L}_{0} \equiv \operatorname{dim} \mathcal{N}(\mathbf{A}) \equiv$ $\operatorname{dim} \operatorname{ker} \mathbf{A}=n-r$.
Definition row space: The space spanned $\mathbb{E}^{n}$ by row vectors of $\mathbf{A}$ is called row space of $\mathbf{A}$.
Theorem 5.13: rank of $\mathbf{A}_{m \times n}$ :

- amount of pivot elements in row echelon form
- rank of linear map $\mathbf{A}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{m}$ as $\operatorname{dim} \operatorname{im} \mathbf{A}$
- dimension of column space (column rank)
- dimension of row space (row rank)

Corollary 5.14: $\operatorname{rank} \mathbf{A}^{\top}=\operatorname{rank} \mathbf{A}^{H}=\operatorname{rank} \mathbf{A}$. Theorem 5.15: Column space of $\mathbf{A}_{m \times n}$ : im $\mathbf{A} \equiv$ $\mathcal{R}(\mathbf{A})=\mathcal{R}(\tilde{\mathbf{A}})=\operatorname{span}\left\{\mathbf{a}_{n 1}, \ldots, \mathbf{a}_{n r}\right\}$ with $\mathbf{a}_{n k}$ as pivot columns of $\mathbf{A}$ and $\mathbf{A}$ as $m \times r$ matrix from those. Theorem 5.16: $\mathbf{A} \in \mathbb{E}^{m \times n}, \mathbf{B} \in \mathbb{E}^{p \times m}$ :

- $\operatorname{rank} \mathbf{B A} \leq \min \{r a n k \mathbf{B}, \operatorname{rank} \mathbf{A}\}$
- $\operatorname{rank} \mathbf{B}=m(\leq p) \Rightarrow \operatorname{rank} \mathbf{B A}=\operatorname{rank} \mathbf{A}$

Corollary 5.17: $\mathbf{A} \in \mathbb{E}^{m \times m}, \mathbf{B} \in \mathbb{E}^{m \times m}$.

- $\operatorname{rank} \mathbf{B A} \leq \min \{\operatorname{rank} \mathbf{B}, \operatorname{rank} \mathbf{A}\}$
- $\operatorname{rank} \mathbf{B}=m \Rightarrow \operatorname{rank} \mathbf{B A}=\operatorname{rank} \mathbf{A}$

Theorem 5.18: Equivalent for $\mathbf{A} \in \mathbb{E}^{n \times n}$

- A is invertible
- A is regular
- the $n$ column vectors of $\mathbf{A}$ are linearly independent
- the $n$ row vectors of $\mathbf{A}$ are linearly independent
- $\operatorname{im} \mathbf{A} \equiv \mathcal{R}(\mathbf{A})=\mathbb{E}^{n}$
- $\operatorname{ker} \mathbf{A} \equiv \mathcal{N}(\mathbf{A})=\{\mathbf{o}\}$
- map $\mathbf{A}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is an automorphism
- A transformation matrix of coordinate transformation in $\mathbb{E}^{n}$
affine spaces, general solution inhomogenous SLE Definition affine (sub)space: $U \subset V, u_{0} \in V$. $u_{0}+U: \equiv\left\{u_{0}+u \mid u \in U\right\}$ is called affine (sub)space. Definition affine mapping: $F: X \rightarrow Y$ linear map and $y_{0} \in Y . H: X \rightarrow y_{0}+Y, x \mapsto y_{0}+F x$ is called affine map.
Theorem 5.19: $x_{0}$ any solution of $\mathbf{A x}=\mathbf{b} . \mathcal{L}_{0}$ the general solution of $\mathbf{A x}=\mathbf{o}$. Then, general solution $\mathcal{L}_{\mathbf{b}}$ of $\mathbf{A x}=\mathbf{b}$ is affine subspace $\mathcal{L}_{\mathbf{b}}=\mathbf{x}_{0}+\mathcal{L}_{0}$.
map matrix for coordiante transforamtion
$X$ and $Y$ vector spaces with dimension $n$ and $m$.
- $F: X \rightarrow Y, x \mapsto y$ - linear map
- A : $\mathbb{E}^{n} \rightarrow \mathbb{E}^{m}, \zeta \mapsto \eta$ - some transformation matrix for $F$
- $\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}, \zeta^{\prime} \rightarrow \zeta$ - transformation matrix in $\mathbb{E}^{n}$
$\mathbf{S} \cdot \mathbb{E}^{m}$
- $\begin{aligned} & \mathbf{S}: \mathbb{E}^{m} \\ & \text { in } \mathbb{E}^{m}\end{aligned} \rightarrow \mathbb{E}^{m}, \eta^{\prime} \mapsto \eta$ - transformation matrix

| $x \in X$ | $\xrightarrow[\text { lin. Abb. }]{F}$ | $y \in Y$ |  |
| :---: | :---: | :---: | :---: |
| $\kappa_{X} \downarrow \downarrow \kappa_{X}^{-1}$ |  | $\kappa_{Y} \downarrow \mid \kappa_{Y}^{-1}$ | (Koordinatenabbildung bzgl. "alten" Basen) |
| $\boldsymbol{\xi} \in \mathbb{E}^{n}$ | $\xrightarrow[\text { Abb.matrix }]{\mathrm{A}}$ | $\boldsymbol{\eta} \in \mathbb{E}^{m}$ | (Koordinaten bzgl. "alten" Basen) |
| $\mathbf{T}^{-1} \downarrow \uparrow \mathbf{T}$ |  | $S^{-1} \downarrow \mid$ S | (Koordinatentransformation |
| $\boldsymbol{\xi}^{\prime} \in \mathbb{E}^{n}$ | $\xrightarrow[\text { Abb.matrix }]{\mathrm{B}}$ | $\boldsymbol{\eta}^{\prime} \in \mathbb{E}^{m}$ | (Koordinaten bzgl. "neuen" Basen) |

For $\mathbf{B}$ of $F$ in new basis in $\mathbb{E}^{m}$ and $\mathbb{E}^{n}: \mathbf{B}=\mathbf{S}^{-1} \mathbf{A T}$ and $\mathbf{A}=\mathbf{S B T}^{-1}$. With rank $F=\operatorname{rank} \mathbf{A}=$ rank $\mathbf{B}$.
Definition similarity: $n \times n$ matrices $\mathbf{A}$ and $\mathbf{B}$ are similar if some regular $\mathbf{T}$ exists so that $\mathbf{B}=\mathbf{T}^{-1} \mathbf{A T}$ and $\mathbf{A}=\mathbf{T B T}^{-1} . \mathbf{A} \mapsto \mathbf{B}=\mathbf{T}^{-1} \mathbf{A T}$ is called similarity transformation.
Theorem 5.20: $F: X \rightarrow Y$ linear map. $\operatorname{dim} X=n$, $\operatorname{dim} Y=m$, rank $F=r$. Then, transformation ma-

vector spaces with scalar product

## normed vector spaces

Definition norm: For some vector space $V$. A norm is a function $\|\cdot\|: V \rightarrow \mathbb{R}, x \mapsto\|x\|$ with three characteristics:

1. positiv definit: $\|x\| \geq 0 \forall x \in V \&\|x\|=0 \Rightarrow$ $x=0$
2. homogenous in the absolut value: $\|\alpha x\|=$ $|\alpha|\|x\| \forall x \in V, \alpha \in \mathbb{E}$
3. triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$ $\forall x, y \in V$
$V$ with a norm: normed vector space/normed linear space

## vector spaces with scalar product

Definition scalar product: Scalar product in real or complex vector space is a function $\langle.,\rangle:. V \times V \rightarrow$ $\mathbb{E}, x, y \mapsto\langle x, y\rangle$ with:

1. linear in second factor: $\langle x, y+z\rangle=\langle x, y\rangle+$ $\langle x, z\rangle \forall x, y, z \in V \&\langle x, \alpha y\rangle=\alpha\langle x, y\rangle$ $\forall x, y \in V, \alpha \in \mathbb{E}$.
2. hermitian: $\langle x, y\rangle=\overline{\langle y, x\rangle} \forall x, y \in V$ (symmetric for real)
3. positiv definit: $\langle x, x\rangle \geq 0 \forall x \in V \&\langle x, x\rangle=$
$0 \Rightarrow x=0$
$V$ with scalar product: vector space with scalar/inner product.
Definition: $V$ finite dimension:

- $\mathbb{E}=\mathbb{R}:$ Euclidean vector space / orthogonal vector space
- $\mathbb{E}=\mathbb{C}$ : unitary vector space

Definition induced norm: Induced norm/length of $x \in V$ with scalar product: $\|x\|: \equiv \sqrt{\langle x, x\rangle}$.
Theorem 6.1 - Cauchy-Bunjakovski-Schwarz inequality: $|\langle x, y\rangle| \leq\|x\|\|y\|$ for all $x, y \in V$. Equality if and only if $x, y$ linearly dependent.
Definition angle: Angle $\varphi(0 \leq \varphi \leq \pi)$ between $x, y \in V: \varphi: \equiv \arccos \frac{\operatorname{Re}\langle x, y\rangle}{\|x\|\|y\|} \cdot \bar{x}, y \in V$ are orthogonal (perpendicular) if and only if $\langle x, y\rangle=0, x \perp y$. $M, N \subseteq V$ are orthogonal if and only if $\langle x, y\rangle=0$ for all $x \in M, y \in N: M \perp N$.
Theorem 6.2 - pythagorean theorem: $x \perp y \Rightarrow$ $\|x \pm y\|^{2}=\|x\|^{2}+\|y\|^{2}$ for all $x, y$ in a vector space with scalar product
Theorem 6.3: Set $M$ of pairwise orthogonal vectors is
linearly independent if o $\not \not \not M$. Definition: Basis is orthogonal if basis vectors pairwise
orthogonal: $\left\langle b_{k}, b_{l}\right\rangle=0$ if $k \neq l$. It is orthonormal if additionally length is $1:\left\langle b_{k}, b_{k}\right\rangle=1$ for all $k$.
Definition Kronecker symbol: $\delta_{k l}: \equiv\left\{\begin{array}{l}0, k \neq l \\ 1, k=l\end{array}\right.$. Thus: $\left\langle b_{k}, b_{l}\right\rangle=\delta_{k l}$.
Theorem 6.4: $\quad V n$-dimensional vector space with scalar product and orthonormal basis $\left\{b_{1}, \ldots, b_{n}\right\}$. For all $x \in V: x=\sum_{k=1}^{n}\left\langle b_{k}, x\right\rangle b_{k}$. This means: For the coordinates for some orthonormal basis we simply have $\zeta_{k}=\left\langle b_{k}, x\right\rangle$.
$x=\sum_{k=1}^{n}\left\langle b_{k}, x\right\rangle b_{k}=\sum_{k=1}^{n} b_{k}\left(b_{k}^{H} x\right)=$ $\left(\sum_{k=1}^{n} b_{k} b_{k}^{H}\right) x$ Thus: $\mathbf{I}_{n}=\sum_{k=1}^{n} b_{k} b_{k}^{H}$.
Theorem 6.5 - Parseval's Theorem: $\zeta_{k}: \equiv\left\langle b_{k}, x\right\rangle$ and $\eta_{k}: \equiv\left\langle b_{k}, y\right\rangle(k=1, \ldots, n) .\langle x, y\rangle=\sum_{k=1}^{n} \overline{\zeta_{k}} \eta_{k}=$ $\zeta^{H} \eta=\langle\zeta, \eta\rangle$. Thus, the scalar product of two vectors equals the euclidean scalar product of its coordinate vectors. Hence: $\|x\|=\|\zeta\|, \angle(x, y)=\angle(\zeta, \eta)$, $x \perp y \Leftrightarrow \zeta \perp \eta$.
$\left\{a_{1}, a_{2}, \ldots\right\}$
finite or countably finite set of vectors. We compute a same-sized set $\left\{b_{1}, b_{2}, \ldots\right\}$ :

- $b_{1}: \equiv \frac{a_{1}}{\left\|a_{1}\right\|}$
- $\tilde{b_{k}}: \equiv a_{k}-\sum_{j=1}^{k-1}\left\langle b_{j}, a_{k}\right\rangle b_{j}$
- $b_{k}: \equiv \frac{\tilde{b_{k}}}{\left\|\tilde{b_{k}}\right\|}$
for $k=2,3$,
Theorem 6.6: The vectors $b_{1}, b_{2}, \ldots$ computed with Gram-Schmidt are normed and pairwise orthogonal. After $k$ septs: $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \underset{=}{=}$ $\operatorname{span}\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$. If $\left\{a_{1}, a_{2}, \ldots\right\}$ is a basis of $V$ $\Rightarrow\left\{b_{1}, b_{2}, \ldots\right\}$ is an orthonormal basis of $V$.
Corollary 6.7: For a vector space with finite or countably finite dimension, an orthonormal basis exists.
orthogonal comlement
Corollary 6.8: In a finite-dimensional (our countably dimensional) vector space with scalar product, every set of orthonormal vectors can be extended to an orthonormal basis.
Definition: $V$ finite-dimensional with scalar product. $U \subset V . \quad U^{\perp}$ (U perp) is orthogonal subspace/orthogonal complement of $U$. We have $V=$ $U \oplus U^{\prime}, U \perp U^{\perp}$. Explicitly: $U^{\perp}: \equiv\{x \in V \mid x \perp U\}$. $V$ then is the direct sum of orthogonal complements. Remember $\left(U^{\perp}\right)^{\perp}=U$ and $\operatorname{dim} U^{\perp}+\operatorname{dim} U=$ $\operatorname{dim} V$.
Theorem 6.9: $m \times n$ matrix. A with rank $r$.
- $\mathcal{N}(\mathbf{A})=\left(\mathcal{R}\left(\mathbf{A}^{H}\right)\right)^{\perp} \subset \mathbb{E}^{n}$
- $\mathcal{N}\left(\mathbf{A}^{H}\right)=(\mathcal{R}(\mathbf{A}))^{\perp} \subset \mathbb{E}^{m}$
$\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}\left(\mathbf{A}^{H}\right)=\mathbb{E}^{n}$
- $\mathcal{N}\left(\mathbf{A}^{H}\right) \oplus \mathcal{R}(\mathbf{A})=\mathbb{E}^{m}$
- $\operatorname{dim} \mathcal{R}(\mathbf{A})=r$
- $\operatorname{dim} \mathcal{R}\left(\mathbf{A}^{H}\right)=r$
- $\operatorname{dim} \mathcal{N}(\mathbf{A})=n-r$
- $\operatorname{dim} \mathcal{N}\left(\mathbf{A}^{H}\right)=m-r$

Definition: The two paris $\mathcal{N}(\mathbf{A}), \mathcal{R}\left(\mathbf{A}^{H}\right)$ and $\mathcal{N}\left(\mathbf{A}^{H}\right), \mathcal{R}(\mathbf{A})$ are called the four fundamental subspaces of $\mathbf{A}$.
orthogonal/unitary base change
Theorem 6.10: Transformation matrix if change of basis between orthonormal bases is unitary $(\mathbb{E}=\mathbb{C})$ or orthogonal $(\mathbb{E}=\mathbb{R})$. - $\mathbf{I}=\mathbf{T}^{H} \mathbf{T}$.
Theorem 6.11: Orthogonal/unitary change of basis Old $(\zeta)$ and new $\left(\zeta^{\prime}\right)$ coordinate vectors linked: $\zeta=\mathbf{T} \zeta^{\prime}$ and $\zeta^{\prime}=\mathbf{T}^{H} \zeta$
For $V$ some $\mathbb{E}^{n}$ : Basis vector as columns of orthogonal/unitary matrices: $\mathbf{B}=\mathbf{B}^{\prime} \mathbf{T}^{H}, \mathbf{B}^{\prime}=\mathbf{B T}$.

Theorem 6.12: $\quad \eta$ and $\eta^{\prime}$ pair of old/new coordinates: $\left\langle\zeta^{\prime}, \eta^{\prime}\right\rangle=\langle\zeta, \eta\rangle$. Especially: $\left\|\zeta^{\prime}\right\|=\|\zeta\|, \angle\left(\zeta^{\prime}, \eta^{\prime}\right)=$ $\angle(\zeta, \eta), \zeta^{\prime} \perp \eta^{\prime} \Leftrightarrow \zeta \perp \eta$.

## orthogonal/unitary maps

Definition: $X, Y$ unitary/orthogonal vector spaces. $F$ $X \rightarrow Y$ unitary/orthogonal if $\langle F x, F y\rangle_{Y}=\langle x, y\rangle_{X}$ for any $x, y \in X$
Theorem 6.13: $F: X \rightarrow Y$ orthogonal/unitary.

1. $\|F x\|_{Y}=\|x\|_{X}$ (length preserving/isometric) 2. $x \perp y \Rightarrow F x \perp F y$ (angle preserving)
2. $\operatorname{ker} F=\{o\}-F$ is injective

If $\operatorname{dim} X=\operatorname{dim} Y<\infty$. Also:
4. $F$ is isomorphism
5. $\left\{b_{1}, \ldots, b_{n}\right\}$ orthonormal basis of $\left\{F b_{1}, \ldots, F b_{n}\right\}$ orthonormal basis of $Y$
6. $F^{-1}$ unitary/orthogonal
7. A unotariy/orthogonal for orthonormal bases in $X, Y$
Lemma 6.14: $F: X \rightarrow Y, G: Y \rightarrow Z$ two unitary/orthogonal isomorphisms of finite dimensional vec tor spaces with scalar product, so $G \circ F: X \rightarrow Z$. Lemma 6.15: $V n$-dimensional vector space witl scalar product with orthonormal basis, $\kappa_{V}: V \rightarrow \mathbb{E}^{n}$ is unitary/orthogonal isomorphism.
Lemma 6.16: $\mathbf{A} \in \mathbb{E}^{n \times n}$ is unitary/orthogonal if and only if, $\mathbf{A}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is unitary/orthogonal

## operators and matrices

Definition: $X, Y$ vector spaces with norms $\|.\|_{X},\|.\|_{Y}$ $F: X \rightarrow Y$ (linear map/operator) is called bounded i $\gamma_{F} \geq 0$ with $\|F(x)\|_{Y} \leq \gamma_{F}\|x\|_{X}$ for all $x \in X$. Al
ToDo!!! Script pages 148 ff. \& Obsidian

## least square and QR decomposition

## orthogonal projections <br> Definition: $\mathbf{P}: \mathbb{E}^{m} \rightarrow \mathbb{E}^{m}$ is called projection or projector of $\mathbf{P}^{2}=\mathbf{P} . \mathbf{P}$ is called orthogonal projection if $\operatorname{ker} \mathbf{P} \perp \operatorname{im} \mathbf{P}$ or $\mathcal{N}(\mathbf{P}) \perp \mathcal{R}(\mathbf{P})$. Otherwise the projection is oblique. <br> Lemma 7.1: $\mathbf{P}$ projector $\Rightarrow \mathbf{I}-\mathbf{P}$ projector and $\operatorname{im}(\mathbf{I}-\mathbf{P})=\operatorname{ker} \mathbf{P}$ and $\operatorname{ker}(\mathbf{I}-\mathbf{P})=\operatorname{im} \mathbf{P}$ Theorem 7.2: P porojection. Equivalent:

- $\mathbf{P}$ orthogonal projector
- $\mathbf{I}-\mathbf{P}$ orthogonal projector
- $\mathbf{P}^{H}=\mathbf{P}$

Lemma 7.3: $\mathbf{A}_{m \times n}, \operatorname{rank} \mathbf{A}=n(\leq m) \Rightarrow \mathbf{A}^{H} \mathbf{A}$ is regular
Theorem 7.4: orthogonal projection $\mathbf{P}_{\mathbf{A}}: \mathbb{E}^{m}$ $\operatorname{im} \mathbf{A} \subseteq \mathbb{E}^{m}$ on column space $\mathcal{R}(\mathbf{A}) \equiv \operatorname{im} \overrightarrow{\mathbf{A}}$ of $\mathbf{A}_{m \times n}$ with $\operatorname{rank} \mathbf{A}=n(\leq m): \mathbf{P}_{\mathbf{A}}: \equiv$ $\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}$

Corollary 7.5: orthogonal projection $\mathbf{P}_{\mathbf{Q}}: \mathbb{E}^{m}$ $i m \mathbf{Q} \subseteq \mathbb{E}^{m}$ on column space $\mathcal{R}(\mathbf{Q}) \equiv \operatorname{im} \mathbf{Q}$ of $\mathbf{Q}_{m \times n}=\left(\begin{array}{lll}\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right)$ with orthonormal columns: $\mathbf{P}_{\mathbf{Q}}: \equiv \mathbf{Q Q}^{H}$. Thus: $\mathbf{P}_{\mathbf{Q}}=\sum_{j=1}^{n} \mathbf{q}_{j}\left\langle\mathbf{q}_{j}, \mathbf{y}\right\rangle$.
With the pythagoren theorem, this can be reasoned: Theorem 7.6: orthogonal projection $\mathbf{P} .\|\mathbf{y}-\mathbf{P y}\|_{2}=$ $\min _{\mathbf{z} \in i m}\|\mathbf{P}-\mathbf{z}\|_{2}$.
Analogous also with different scalar products, because the pythagorean theorem still holds.
least squares
Definition: $\mathbf{A x}=\mathbf{y}, \mathbf{A}_{m \times n}, m>n$ - overdetermined linear system. A solution only exists if $y \in \mathcal{R}(\mathbf{A})$. If not solution exists, one chooses $\mathbf{x} \in \mathbb{E}^{n}$ so that the residual/residual vector $\mathbf{r}: \equiv \mathbf{y}-\mathbf{A x}$ has minimal Euclidean norm (2-norm/length). Such $\mathbf{x}$ is called least square solution of $\mathbf{A x}=\mathbf{y}$
Assuming columns of $\mathbf{A}$ to be linearly independent $\left(\right.$ ker $\mathbf{A}=\{o\}, \mathbf{A}^{H} \mathbf{A}$ regular): $\mathbf{x}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{y}$ and $\mathbf{A}^{H} \mathbf{A x}=\mathbf{A}^{H} \mathbf{y}$. Those are called normal equations.
Definition: $\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}$ is called pseudo-inverse.
Theorem 7.7: $\quad \mathbf{A} \in \mathbb{E}^{m \times n}, \operatorname{rank} \mathbf{A}=n \leq m$, $y \in \mathbb{E}^{m}$. The overdetermined $\operatorname{SLE} \mathbf{A x}=\mathbf{y}$ has a unique solution $\mathbf{x}$ in the sense of the least square problem: $\|\mathbf{A} \mathbf{x}-\mathbf{y}\|^{2}=\underset{\sim}{\min }\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{y}\|^{2}$. $\mathbf{x}$ may be com-

$$
\tilde{\mathbf{x}} \in \mathbb{E}^{n}
$$

puted by solving the regular system of the normal equations. The residual vector is orthogonal to $\mathcal{R}(\mathbf{A})$
Lemma 7.8: Let $\mathbf{a}_{n+1}: \equiv \mathbf{y}$. Do Gram-Schmidt on $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}, \mathbf{a}_{n+1}$. Then: $\mathbf{q}_{n+1}^{\sim}: \equiv \mathbf{y}-\mathbf{A x}=$ $r \perp \mathcal{R}(\mathbf{A}) \stackrel{y}{=} \operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. The system $\mathbf{A x}=$ $\mathbf{y}-\mathbf{q}_{n+1}$ is then uniquely solvable for $\mathbf{x}$.

## QR decomposition

Consider A with linearly independent columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Remember the Gram-Schmidt process. We may write $\mathbf{a}_{1}=\mathbf{q}_{1}\left\|\mathbf{a}_{1}\right\|$ and $\mathbf{a}_{k}=$ $\mathbf{q}_{k}\left\|\tilde{\mathbf{q}_{k}}\right\|+\sum_{j=1}^{k-1} \mathbf{q}_{j}\left\langle\mathbf{q}_{j}, \mathbf{a}_{k}\right\rangle$. We define the coefficients $r_{11}=\left\|\mathbf{a}_{1}\right\|, r_{j k}=\left\langle\mathbf{q}_{j}, \mathbf{a}_{k}\right\rangle(j=1, \ldots, k-1)$, $r_{k k}: \equiv\left\|\tilde{\mathbf{q}_{k}}\right\|$ for $k=2, \ldots, n$. We add $r_{j k}=0$ $(j=k+1, \ldots, n)$. We can then write: $\mathbf{a}_{k}=$ $\mathbf{q}_{k} r_{k k}+\sum_{j=1}^{k-1} \mathbf{q}_{r} r_{j k}=\sum_{j=1}^{k} \mathbf{q}_{j} r_{j k}=\sum_{j=1}^{n} \mathbf{q}_{j} r_{j k}$. We then may define $\mathbf{A}: \equiv\left(\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right)$ and
$\mathbf{Q}: \equiv\left(\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right)$ and $\mathbf{R}: \equiv\left(\begin{array}{cccc}r_{11} & r_{12} & \ldots & r_{1 n} \\ 0 & r_{22} & \ldots & r_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 0 & r_{n n}\end{array}\right)$.
Then, we may rewrite the last formula to $\mathbf{A}=\mathbf{Q R}$.
Definition QR decomposition: The decomposition above of $\mathbf{A}_{m \times n}$ with rank $n \leq m$ in a $m \times n$ matrix $\mathbf{Q}$ with orthonormal columns and a $n \times n$ upper triangular matrix with positive diagonal elements is called QR decomposition of $\mathbf{A}$.
We may extend $\mathbf{Q}$ to an orthonormal basis of $\mathbb{E}^{n}: \mathbf{Q}: \equiv$ $\left(\mathbf{Q} \mid \mathbf{Q}_{\perp}\right): \equiv\left(\begin{array}{llll}q_{1} & \ldots & q_{n} \mid q_{n+1} & \ldots\end{array} q_{m}\right)$. We may extend $\mathbf{R}$ with $m-n$ zero columns: $\widetilde{\mathbf{R}}: \equiv\binom{\mathbf{R}}{\mathbf{O}}$. Then: $\mathbf{A}=\mathbf{Q R}=\widetilde{\mathbf{Q}} \tilde{\mathbf{R}}$.
Definition: The just introduced 'extended' form is
sometimes called QR decomposition and the earlier mentioned form $\mathbf{Q R}$ factorization.
Lemma 7.9: $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ columns of $\mathbf{A}_{\times n}$. GramSchmidt leads to $\mathbf{Q R}$ decomposition. Adding $\mathbf{y}$ to A leads to the residual $\mathbf{r} \perp \mathcal{R}(\mathbf{A}): \mathbf{r}=\mathbf{y}-$ $\sum_{j=1}^{n} \mathbf{q}_{j}\left\langle\mathbf{q}_{j}, \mathbf{y}\right\rangle=\mathbf{y}-\mathbf{Q Q}^{H} \mathbf{y}$. For $\mathbf{x}$ as the least square solution, we have $\mathbf{R x}=\mathbf{Q}^{H} \mathbf{y}$.

QR decomposition with pivoting

## ToDo!!! Obsidian

## determinants

## permutations

Definition permutation: A permutation of $n$ elements is a unique map of $\{1, \ldots, n\}$ onto itself. The set of all such permutations is $S_{n}$ (symmetric group).
This formula is unusable for practical use, because it can only be computed in $\mathcal{O}(n!\cdot n)$. It would take unreason able amount of time to compute determinants in this way (about 75 years for $n=20$ ).
Definition transposition: Permutation with only two elements switched.
Theorem 8.1: There are $n$ ! permutations in $S_{n}$
Theorem 8.2: For $n>1$, every permutation $p$ can be expressed as product of transpositions $t_{k}$ of neighboring elements: $p=t_{\nu} \circ t_{\nu-1} \circ \ldots \circ t_{2} \circ t_{1}$. This is normally not unique. But the number of transpositions is.
Definition sign: permutation $p . \operatorname{sign} p=\left\{\begin{array}{c}+1, \nu \text { event } \\ -1, \nu \text { uneven }\end{array}\right.$

## definition, characteristics

Definition determinant: $\mathbf{A}_{n \times n}$. Determinant
$\operatorname{det} \mathbf{A}:=\sum_{p \in S_{n}} \operatorname{sign} p \cdot a_{1, p(1)} a_{2, p(2)} \cdots a_{n, p(n)}$ for all $n$ ! permutations.

## Theorem 8.3: The determinant is a function det

$\mathbb{E}^{n \times n} \rightarrow \mathbb{E}, \dot{\mathbf{A}} \mapsto \operatorname{det} \mathbf{A}$ with three characteristics:



$$
\gamma^{\prime} \operatorname{det}\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

2. switching two rows changes the sign of $\operatorname{det}(\mathbf{A})$ 3. $\operatorname{det}(\mathbf{I})=1$

Theorem 8.4: Further characteristics:
4. A has zero column: $\operatorname{det}(\mathbf{A})=0$
5. $\operatorname{det}(\gamma \mathbf{A})=\gamma^{n} \operatorname{det}(\mathbf{A})$
6. A has two identical rows: $\operatorname{det}(\mathbf{A})=0$
7. Adding multiply of one row to another row does not change $\operatorname{det}(\mathbf{A})$.
8. A diagonal matrix: $\operatorname{det}(\mathbf{A})=$ product of diagonal elements
9. A triangular matrix: $\operatorname{det}(\mathbf{A})=$ product of diag-

Notice for the Gauss algorithm: Sign of determinant changes when rows switched. Otherwise unchanged. Theorem 8.5: $\quad \mathbf{A}_{n \times n}: \operatorname{det} \mathbf{A} \neq 0 \Leftrightarrow \operatorname{rank} \mathbf{A}=$ $n \Leftrightarrow \mathbf{A}$ regular. Applying the Gauss-algorithm to $\mathbf{A}, \nu$ being the number of row changes: $\operatorname{det} \mathbf{A}=$ $(-1)^{\nu} \prod_{k=1}^{n} r_{k k}$.
Apply Gauss-algorithm to $\mathbf{A}_{n \times n}$ Algorithm 8.1 is usually much faster than using the permutation definition. That's because Gauss elimination works in $\mathcal{O}\left(n^{3}\right)$, compared to about $\mathcal{O}(n!\cdot n)$ of the implicit computation of the definition/permutation formula.
Theorem 8.6: The defined determinant is the only function with characteristics (1)-(3).
Theorem 8.7: $\mathbf{A}, \mathbf{B} \in \mathbb{E}^{n \times n} . \operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A})$ $\operatorname{det}(\mathbf{B})$.
Theorem 8.8: $\quad \mathbf{A}_{n \times n}$ regular. $\operatorname{det}(\mathbf{A})^{-1}=\operatorname{det}\left(\mathbf{A}^{-1}\right)$. Theorem 8.9: $\operatorname{det}\left(\mathbf{A}^{\top}\right)=\operatorname{det}(\mathbf{A})$ and $\operatorname{det}\left(\mathbf{A}^{H}\right)=$ $\overline{\operatorname{det}(\mathbf{A})}$
Corollary 8.10: Characteristics (1),(2),(4),(6),(7) are also valid for columns (instead of rows).
expansion by rows and columns
Definition: $\mathbf{A}_{n \times n}$. For $a_{k l}$, we define $(n-1) \times(n-1)$ matrix $\mathbf{A}_{[k, l]}$ by removing row $k$ and colum $l$ from $\mathbf{A}$. Cofactor $\kappa_{k l}: \equiv(-1)^{k+l} \operatorname{det} \mathbf{A}_{[k, l]}$.
Lemma 8.11: A. Only $a_{k l} \neq 0$ not zero in $l$ column. Then $\operatorname{det} \mathbf{A}=a_{k l} \kappa_{k l}$.
Theorem 8.12: $\quad \mathbf{A}_{n \times n}$. For all $k, l \in\{1, \ldots, n\}$ : $\operatorname{det} \mathbf{A}=\sum_{i=1}^{n} a_{k i} \kappa_{k i}$ (expansion along row $k$ ) and $\operatorname{det} \mathbf{A}=\sum_{i=1}^{n} a_{i l} \kappa_{i l}$ (expansion along colum $l$ ).

## block triangular matrices

heorem 8.13. For a $2 \times 2$ block matrix
$\operatorname{det}\left(\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{O} & \mathbf{D}\end{array}\right)=\operatorname{det} \mathbf{A} \cdot \operatorname{det} \mathbf{D}$ or rather $\operatorname{det}\left(\begin{array}{ll}\mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{D}\end{array}\right)=\operatorname{det} \mathbf{A} \cdot \operatorname{det} \mathbf{D}$
Corollary 8.14: The determinant of a block matrix is the product of the determinants of its diagonal blocks.
eigenvalues and eigenvectors

Intuition: We search vectors, which give directions in which some transformation only scales the space but not rotates it. Those are eigenvectors. The scaling factor is the eigenvalue.
$V$ finite dimensional, $F: V \rightarrow V, x \mapsto F x$
eigenvalues/eigenvectors of matrices/linear maps Definition eigenvalue/eigenvector: $\lambda \in \mathbb{E}$ is eigenvalue of $F$ if an eigenvector $v \in V, v \neq 0$ with $F v=\lambda v$ exists.
Definition eigenspace: $\lambda$ eigenvalue. $E_{\lambda}: \equiv\{v \in$ $V \mid F v=\lambda v\}$. Eigenspace is set of eigenvectors with zero vector.

Lemma 9.1: $F: V \rightarrow V$ linear map, $\kappa_{V}: V \rightarrow$
$\mathbb{E}^{n}, x \mapsto \dot{\zeta}$ coordinate map of $V$ (for some basis) $\mathbf{A}=\kappa_{V} F \kappa_{V}^{-1}$ transformation matrix. Then: $\lambda$ eigen value and $\mathbf{x}$ eigenvector of $F \Leftrightarrow \lambda$ eigenvalue and eigenvector of A
$v$ for $\lambda$ is not unique, because $F v=\lambda v \Leftrightarrow F(\alpha v)=$ $\lambda(\alpha v)$. Thus, $\operatorname{dim} E_{\lambda} \geq 1$
If $(F-\lambda I) v=o$ has a non-trivial solution $\lambda$ is an eigenvalue. $E_{\lambda}$ is the general solution
Lemma 9.2: $\lambda$ eigenvalue of $F: V \rightarrow V$ if and only if $F-\lambda I$ has non-trivial kernel. $E_{\lambda}=\operatorname{ker}(F-\lambda I)$. $E_{\lambda} \neq\{o\}, E_{\lambda} \subseteq V$
Definition geometric multiplicity: Geometric multiplicity of $\lambda$ is dimension of $E_{\lambda}$.
Corollary 9.3: $\lambda$ eigenvalue of $\mathbf{A} \in \mathbb{E}^{n \times n}$ if $\mathbf{A}-\lambda \mathbf{I}$ singular. $E_{\lambda}=\operatorname{ker}(\mathbf{A}-\lambda \mathbf{I}) \neq\{o\}$. Geometric multiplicity of $\lambda: \operatorname{dim} E_{\lambda}=\operatorname{dim} \operatorname{ker}(\mathbf{A}-\lambda \mathbf{I})=$ $n-\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})$.
Definition characteristic polynomial and equation $\mathcal{X}_{\mathbf{A}}(\lambda): \equiv \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ is characteristic polynomia of $\mathbf{A} \in \mathbb{E}^{n \times n} . \mathcal{X}_{\mathbf{A}}(\lambda)=0$ is the characteristic equation.
Definition trace: The sum of the diagonal elements of $\mathbf{A}$ : trace $\mathbf{A}: \equiv a_{11}+a_{22}+\ldots+a_{n n}$. Lemma 9.4: $\quad \mathcal{X}_{\mathbf{A}}(\lambda) \equiv: \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(-\lambda)^{n}+$ trace $\mathbf{A}(-\lambda)^{n-1}+\ldots+\operatorname{det}(\mathbf{A})$
Theorem 9.5: $y \in \mathbb{E}$ is eigenvalue of $\mathbf{A} \in \mathbb{E}^{n \times n}$ if and only if $\lambda$ root of characteristic polynomial/solution of characteristic equation.
According to the fundamental theorem of linear algebra, the characteristic polynomial of degree $n$ has $n$ (usually complex) roots. Becuase then complex eigenvectors exists, we usually consider matrices with real entries also as complex matrices.
Definition algebraic multiplicity: The algeboraic multiplicity of some eigenvalue $\lambda$ is the multiplicity of $\lambda$ as root of $\mathcal{X}_{\mathrm{A}}$.
Notice: algebranic and geometric multiplicity are not necessarily equal

## $\mathcal{C}^{n \times n}$

1. Compute $\mathcal{X}_{\mathbf{A}}: \equiv \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$
2. Compute roots $\lambda_{1}, \ldots, \lambda_{n}$ of $\mathcal{X}_{\mathbf{A}}$ (with their algebraic multiplicity).
3. For each $\lambda_{k}$ : Determine basis of $\operatorname{ker}(\mathbf{A}-\lambda \mathbf{I})=$ $E_{\lambda_{k}}$

Lemma 9.6: $\mathbf{A} \in \mathbb{E}^{n \times n}$ is singular $\Leftrightarrow 0 \in \sigma(\mathbf{A})$. similarity transformation - spectral decomposition $\overline{F: V} \rightarrow V, x \mapsto F x$. A, B transformation matrices regarding two different bases. Then, $\mathbf{A}$ and $\mathbf{B}$ are similar. $\mathbf{A} \rightarrow \mathbf{B}=\mathbf{T}^{-1} \mathbf{A T}$ is called similarity transformation. We ask: How far A may be simplified by chosing an appropriate similarity transformation.

Theorem 9.7: Similar matrices have the same char acteristic polynomial. Thus they have the same deter minant trace, eigenvalue Also the geometric and al gebraic multiplicities for some $\lambda$ is identical for similar matrices.
Lemma 9.8: A transformation matrix for $F: V \rightarrow V$ is diagonal if and only if the chosen basis of $V$ consists only of eigenvectors
Definition: A basis of eigenvectors of $F$ (or $\mathbf{A}$ ) is an eigenbasis of $F($ or $\mathbf{A})$.
Theorem 9.9: For $\mathbf{A} \in \mathbb{E}^{n \times n}$ a similar diagonal matrix $\boldsymbol{\Lambda}$ exists if and only if an eigenbasis exists for $\mathbf{A}$. For $\mathbf{V}: \equiv\left(\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right)$ with $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ as the eigenbasis, we have $\mathbf{A V}=\mathbf{V} \boldsymbol{\Lambda}$ and $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$. Accordingly, if some $\mathbf{V}$ and $\boldsymbol{\Lambda}$ exists, the diagonal elements of $\boldsymbol{\Lambda}$ are eigenvalues/the columns of $\mathbf{V}$ are eigenvectors of

Definition spectral decomposition
$\mathrm{A}=\mathrm{VAV}^{-1}$
Definition spectral decomposition:
(with diagonal $\boldsymbol{\Lambda}$ ) is called spectral/eigenvalue decomposition of $\mathbf{A}$. If for some $\mathbf{A}$ such a $\boldsymbol{\Lambda}$ exists, $\mathbf{A}$ is diagonalizable.
Corollary 9.10: $\quad \mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$. $\mathbf{V}=$ $\left(\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right) . \mathbf{V}^{-1}=\left(\begin{array}{lll}\mathbf{w}_{1}^{\top} & \ldots & \mathbf{w}_{n}^{\top}\end{array}\right)^{\top}$. Then: $\mathbf{A}=\sum_{k=1}^{n} \mathbf{v}_{k} \lambda_{k} \mathbf{w}_{k}^{\top}$. Meanwhile: $\mathbf{A} \mathbf{v}_{k}=\mathbf{v}_{k} \lambda$ and $\mathbf{w}_{k}^{\top} \mathbf{A}=\lambda \mathbf{w}_{k}^{\top}$.
Definition: $w$ is called left eigenvector of $\mathbf{A}$ if $\mathbf{w}^{\top} \mathbf{A}=$ $\lambda_{k} \mathbf{w}^{\top}$
Theorem 9.11: Eigenvectors for different eigenvalues are linearly independent.
Corollary 9.12: If the $n$ eigenvalues of $F: V \rightarrow V$ are distinct ( $n=\operatorname{dim} \mathbf{V}$ ), an eigenbasis exists. The corresponding transormation map is diagonal
Theorem 9.13: For each eigenvalue, geometric multiplicity $\leq$ algebraic multiplicity.
Theorem 9.14: A matrix is diagonalizable if and only if for each eigenvalue geometric multiplicity = algebraic multiplicity.
symmetric / hermitian matrices
Many eigenvalue problems are self-adjoint - meaning Many elgenvalue problems are self-adjo
the matrices are real symmetric/hermitian.
Theorem 9.15 - spectral theorem: $\mathbf{A} \in \mathbb{C}^{n \times n}$ hermi$\operatorname{tian}\left(\mathbf{A}^{H}=\mathbf{A}\right)$

1. All eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are real.
2. Eigenvectors for different eigenvalues are pairwise orthogonal in $\mathbb{C}^{n}$.
3. $\exists$ orthonormal basis of $\mathbb{C}^{n}$ of eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of $\mathbf{A}$
4. $\mathbf{U}: \equiv\left(\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{n}\end{array}\right)$ (unitary). $\mathbf{U}^{H} \mathbf{A} \mathbf{U}=$ $\boldsymbol{\Lambda}: \equiv \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$

Corollary 9.16: $\mathbf{A} \in \mathbb{R}^{n \times n} \operatorname{real}\left(\mathbf{A}^{\top}=\mathbf{A}\right)$

1. All eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are real.
2. The real eigenvectors for different eigenvalues are pairwise orthogonal in $\mathbb{R}^{n}$.
3. $\exists$ orthonormal basis of $\mathbb{R}^{n}$ of eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of $\mathbf{A}$.
4. $\mathbf{U}: \equiv\left(\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{n}\end{array}\right)$ (orthogonal). $\mathbf{U}^{\top} \mathbf{A U}=$ $\boldsymbol{\Lambda}: \equiv \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$

## Definition: A hermitian.

- positiv definit: $\forall x \in \mathbb{E}^{n}, x \neq 0$ we have $x^{H} A x>0$
- positiv semidefinit: $\forall x \in \mathbb{E}^{n}$ we have $x^{H} A x \geq$

Notice, such A defines a scalar product in $\mathbb{E}^{n}: f$ $\mathbb{E}^{n} \times \mathbb{E}^{n},(u, v) \mapsto f(u, v):=\mathbf{u}^{H} \mathbf{A v}$.
Theorem: $\mathbf{A} \in \mathbb{E}^{n \times n}$ hermitian.

- A positiv definit $\Leftrightarrow$ all eigenvalues of $\mathbf{A}>0$
- A positiv semidefinit $\Leftrightarrow$ all eigenvalues of $\mathbf{A}$ $\geq 0$
Theorem: $\mathbf{A} \in \mathbb{E}^{n \times n}$ is normal $\Leftrightarrow \mathbf{A}$ is diagonalizable by a unitary matrix over $\mathbb{C}$.
Jordan canonical form
Not done.


## singular value decomposition

Theorem 11.1:
$\exists$ unitary $\mathbf{U}=\underset{\left(\mathbf{u}_{1}\right.}{\mathbf{A}} \ldots \mathbb{C}^{m \times n}$, rank $\mathbf{A}=r$
$\left.\mathbf{u}_{m}\right)$ and unitary $\underset{\mathbf{V}}{=}$ $\exists$ unitary $\left.\quad=\left(\begin{array}{ll}\mathbf{u}_{1} & \cdots\end{array} \mathbf{u}_{m}\right)^{\mathbf{v}_{1}} \begin{array}{ll}\mathbf{O} \\ \mathbf{O} & \ldots\end{array} \mathbf{v}_{n}\right)$ and $\boldsymbol{\Sigma}_{m \times n}: \equiv\left(\begin{array}{ll}\mathbf{O}\end{array}\right)$ with $\boldsymbol{\Sigma}_{r}: \equiv$ $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>\sigma_{r+1}=$ $\ldots=\sigma_{\min \{m, n\}}=0$ (positive and ordered). So that: $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}=\sum_{k=1}^{r} \mathbf{u}_{k} \sigma_{k} \mathbf{v}_{k}^{H}$.
Columns of $\mathbf{U}$ orthonormal eigenbasis of $\mathbf{A} \mathbf{A}^{H}$ $\left(\mathbf{A A}^{H}=\mathbf{U} \boldsymbol{\Sigma}_{m}^{2} \mathbf{U}^{H}\right)\left(\mathbf{U}\right.$ diagonalizes $\left.\mathbf{A} \mathbf{A}^{H}\right)$ Columns of $\mathbf{V}$ orthonormal eigenbasis of $\mathbf{A}^{H} \mathbf{A}$ $\left(\mathbf{A}^{H} \mathbf{A}=\mathbf{V} \boldsymbol{\Sigma}_{n}^{2} \mathbf{V}^{H}\right)\left(\mathbf{V}\right.$ diagonalizes $\left.\mathbf{A}^{H} \mathbf{A}\right)$. We also have: $\mathbf{A V}=\mathbf{U} \boldsymbol{\Sigma}$ and $\mathbf{A}^{H} \mathbf{U}=\mathbf{V} \boldsymbol{\Sigma}^{\top}$ Furthermore:

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{1}\right\}$ is basis of $\operatorname{im} \mathbf{A} \equiv \mathcal{R}(\mathbf{A})$
- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is basis of $\operatorname{im} \mathbf{A}^{H} \equiv \mathcal{R}\left(\mathbf{A}^{H}\right)$
$\bullet\left\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}\right\}$ is basis of $\operatorname{ker} \mathbf{A}^{H} \equiv \mathcal{N}\left(\mathbf{A}^{H}\right)$
- $\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ is basis of $\operatorname{ker} \mathbf{A} \equiv \overline{\mathcal{N}}(\mathbf{A})$

Those are all orthonormal bases. If $\mathbf{A}$ is real, $\mathbf{U}, \mathbf{V}$ may be chosen as real orthogonal matrices.
Definition singular value decomposition: The matrix factorization $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}=\sum_{k=1}^{r} \mathbf{u}_{k} \sigma_{k} \mathbf{v}_{k}^{H}$ (from above) is called singular value decomposition (SVD) of A. $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>\sigma_{r+1}=\ldots=\sigma_{\min \{m, n\}}=$ 0 are called singular values of $\mathbf{A} . \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are called left singular vectors. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are called right singular vectors.

Corollary 11.2: $\quad \mathbf{V}_{r}$ matrix with first $r$ columns of V. $\mathbf{U}_{r}$ matrix with first $r$ columns of $\mathbf{U} . \boldsymbol{\Sigma}_{r}$ leading $\times r$ matrix of $\boldsymbol{\Sigma}$. Compact SVD: $\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma} \mathbf{V}_{r}^{H}=$ $\sum_{k=1}^{r} \mathbf{u}_{k} \sigma_{k} \mathbf{v}_{k}^{H}$. $\mathbf{U}_{m \times r}$ and $\mathbf{V}_{n \times r}$ with orthonormal columns. Diagonal elements of $\Sigma_{r}$ positive.

## derivation

$A^{H} A$ is diagonalizable (according to the spetral theorem) and all eigenvalues of $A^{H} A$ are $\geq 0$, because its positiv semidefinit
spectral decomposition of $A^{H} A$ exists because of spectral theorem: $A^{H} A V=V \Lambda, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, $V$ is unitary, $\lambda_{j} \geq 0(j=1, \ldots, n)$. We may sort the $V$ is unitary, $\lambda_{j} \geq 0(j=1, \ldots, n)$. We may sort the
eigenvalues: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>\lambda_{r+1}=\ldots=$ eigenvalues: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>\lambda_{r+1}=\ldots=$
$\lambda_{n}=0$ (notice, $r=\operatorname{rank}\left(A^{H} A\right)=\operatorname{rank} A$ ). And define $\sigma_{j}:=\sqrt{\lambda_{j}}$. This is possible, because $\lambda_{j} \geq 0$. Then: $\left.\begin{array}{ccccccc}A^{H} A\left(v_{1}\right. & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}\end{array}\right)=$ $\left(\begin{array}{llllll}v_{1} & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}\end{array}\right)$

$V_{r}^{H} V_{r}=I_{r \times r}$, because the columns of $V_{r}$ are orthonormal. We get: $A^{H} A V_{r}=V_{r} \Sigma_{r}^{2} V_{r}^{H} A^{H} A V_{r}=\Sigma_{r}^{2}$ $\left(\Sigma_{r}^{-1} V_{r}^{H} a^{H}\right)\left(A V_{r} \Sigma_{r}^{-1}\right)=I_{r \times r} \quad$ (multiplying with $\Sigma_{r}^{-1}$ left and right) $U_{r}^{H} U_{r}=I_{r \times r}$ with $U_{r}:=A V_{r} \Sigma_{r}^{-1} \Rightarrow A V_{r}=U_{r} \Sigma_{r}$. Here, $U_{r}$ is $m \times r, \Sigma_{r}$ is $r \times r$, and $V_{r}$ is $n \times r / V_{r}^{-1}$ is $r \times n$. This is the reduced SVD.
We can extend $U_{r} \in \mathbb{E}^{m \times r}$ to a unitary matrix $U \in$ $\mathbb{E}^{m \times m}: U:=\left(U_{r} \mid U_{r}^{\top}\right)$ with $U^{H} U=U U^{H}=I_{m \times m}$ Then we have $A V=U \Sigma \Rightarrow A=U \Sigma V^{H}$.
optional/additional stuff

## cript, page 63 Givens rotations <br> Householder matrices/reflections

 script, page 64script page 64
permutation matrices

