
Complex Numbers

Definition imaginary unit: i =
√

−1 is the imaginary
unit
Definition complex number: z = x + yi with x, y ∈ R
Definition complex numbers: C = {x + yi|x, y ∈ R}
Definition imaginary/real part: Im(z) = y and
Re(z) = x
Complex numbers are drawn in the complex plane. The
above described form is called normal form.

polar form
Complex numbers can be described by the polar coordi-
nates.
Definition: radius/distance r := |z| =

√
zz =

x2 + y2

Definition: angle/argument θ := Arg(z) = ∠x-axis
and vector
We have z = x + iy = r(cos(θ) + i sin(θ)).
Definition: Euler formula eiθ = cos θ + i sin θ
Definition: polar representation z = reiθ

The polar representation is not unique. Therefore, often
θ ∈ [0; 2π]. Remember: eiπ + 1 = 0 and e2iπ = 1.

polar and normal form conversion

θ 0 π
6

π
4

π
3

π
2

sin θ 0 1
2

√
2

2

√
3

2 1
cos θ 1

√
3

2

√
2

2

√
1

2 0
tan θ 0

√
3

3 1
√

3 ∞

polar form → normal form
x = r cos θ and y = r sin θ

normal form → polar form
r =


x2 + y2.

For x, y one needs cos θ = x
r

, sin θ = y
r

, tan θ = y
x

.
Use above table to get θ or compute arctan with:

calculating with C
z = x + iy = reiθ and w = z + iv = beiα and α ∈ R

Addition
z + w := (x + z) + (y + v)i

Multiplication
α · z := αx + αyi = αreiθ

w · z := ux − vy + i(vx + uy) =, z · w := reiθbeiα =
rbei(θ+α)

complex conjugate
z := x − iy and notice that zz = x2 + y2 ≥ 0.

absolute value
|z| :=

√
zz

division
normal form: z

w
= z

w
· w

w
= zw

|w|2 with τ = 1
|w|2 .

polar form: z
w

= r
s
ei(θ−α) - w ∕= 0 of course!

further computation rules

• zw = z · w
• z

w
= z

w

• z = z
• |z| = |z|
• |zw| = |z| · |w|
• | z

w
| = |z|

|w|
• |z + w| ≤ |z| + |w| (triangle inequality)

subsets of C in the complex plane
|z − i| = 1 is the unit circle around i.

potentiation
zx = rxexiθ

roots
a ∈ C, n ∈ N. If n ∕= 0, there are n roots of
a. n-th roots of a are z ∈ C with zn = a. Thus,
zn = rneinθ = a = seiα.
We get r = n

√
s. nθ = α+2πk ⇒ θ = α+2πk

n
, k ∈ Z.

Systems of Linear Equations (SLEs)

Definition: SLE A SLE with m linear equations in n
unkowns has coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n)
and the right-hand side bi (1 ≤ j ≤ m) and the unkowns
x1, ..., xn. If m = n the system is square.
A SLE can be written in elimination scheme or with the
coefficient matrix A, unknown vector x, and right-hand
side b: Ax = b.
Definition: solution A solution of a SLE is a n-tupel
validating all equations. The general solution is the set
of all solutions. If a SLE has no solution, it is called
inconsistent/unsolvable. If there is exactly one solutoin,
it is called uniquely solvable. If there is more than one
solution, it is called ambiguously solvable.
Definition: equivalence SLEs with same solutions are
equivalent.
Definition: homogenous system A SLE with 0 right-
hand side.

Gaussian Elimination
Idea: Transform a SLE in an equivalent but easier to
solvable system.

forward elimination
We transform the SLE with elementary row operations
to row echelon form, which is easy to solve with back
substitution.
Definition: elementary row operations (i) swithcing
rows, (ii) adding multiple of rows to other rows, and not
necessarily (iii) multiplying a row with a non-zero real
number.
Definition: row echelon form For the first non-zero el-
ement in each row (called pivot element), all elements
below that must be zero and all rows above must have
such an element left from the current column. Upper

triangular form is a special case for certain n = m ma-
trices.

back substitution
One identifies the last pivot varialbe and substitutes it
to the previous equation. From the second last equation
one identifies the second last pirvot variable and substi-
tutes it to the previos equation. And so on. Free vari-
ables (columns without pivots) are assigned a variable.

procedure (general case)
No deails here, obvious. If m > r, the conditions for
a solution cr+1 = ... = cm = 0 are called consistency
conditions. In a homogenous system, consistency con-
ditions are always met.

solution set of a SLE
Definition: rank rank of A is number of pivot elements
r
Theorem: 1.1 A SLE in row echelon form has at least
one solution if: r = m or r < m and consistency con-
ditions met.
If solutions exist: unique if r = n, (n − r)-parameter
based if r < n.
Corollary: 1.2 The rank r only depends on the coeffi-
cient matrix A but not on the chosen pivot elements or
the right-hand side b.
The solution x1 = ... = xn = 0 is called the trivial
solution.
Corollary: An homogenous SLE always has the trivial
solution. If r < n it has non-trivial ones too.
1.5
Corollary: 1.6 A squared SLE is solvable for any right-
hand side if and only if the homogenous system only has
the trivial solution.
Definition: regular/singular If a SLE has a unique solu-
tion, it is regular/non-singular. Otherwise it is singular.
Ax = b has a solution if and only if b is a linear com-
binatin of column vectors of A.

Matrices and Vectors in Rn and Cn

Matrices, row-/column vectors
Definition: A m × n matrix A is a rectangular scheme
of mn elements in m rows and n columns. The element
in row i, column j is aij = (A)ij . A = (aij) .
Definition: square matrices n × n matrix - with order n
Definition: null/zero matrix aij = 0 - denoted O
Definition: diagonal elements ajj (j =
1, ..., min(n, m)) are diagonal elements. Their set
is the (main) diagonal of A.
Definition: diagonal matrix (A)ij = 0, i ∕= j with
D = diag(d11, ..., dnn)
Definition: unit matrix/identity In = diag(1, 1, ..., 1)
Definition: upper triangular matrix (R)ij = 0, i > j
Definition: lower triangular matrix (L)ij = 0, i < j
Definition: vector m × 1: column-vector & 1 × n: row
vector
The set real/complex m × n matrices is Rm×n/Cm×n.

calculating with matrices
A a m × n matrix & B a m × n matrix & α a scalar
Definition: scalar multiplication (αA)ij :≡ α(A)ij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n
Definition: addition (A + B)ij :≡ (A)ij + (B)ij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n (only for same-sized matri-
ces!)

Now, A a m × n matrix & B a n × p matrix
Definition: multiplication (AB)ij :≡n

k=1(A)ik(B)kj - the dimension of the product
is m × p. (only for suitable-sized matrices!)
Theorem: 2.1

• (αβ)A = α(βA)
• (αA)B = α(AB) = A(αB)
• (α + β)A = (αA) + (βA)
• α(A + B) = (αA) + (αB)
• A + B = B + A
• (A + B) + C = A + (B + C)
• (AB)C = A(BC)
• (A + B)C = (AC) + (BC)
• A(B + C) = (AB) + (AC)A(B + C) =

(AB) + (AC)
Theorem: 2.2 neutral matrix exists, inverse matrix ex-
ists, ’difference’ matrix exists
Theorem: 2.3/.4 An×m = (a1 ... an) and xn×1.
Ax = a1x1 + ... + anxn. Aej = aj . With Bm×p =
(b1 ... bp): AB = (Ab1 | ... | Abp).
with addition: commutative group & with multiplica-
tion: non-commutative ring with identity
Definition: linear combination A linear combination of
a1, a2, ..., an is α1a1 + ... + αnan with α1, ..., αn as
scalars.

symetric/hermitian matrices & transpose
Definition: An×m. A⊤

m×n with (A⊤)ij :≡ (A)ji is
called transpose. Am×n with (A)ij :≡ (A)ij is called
complex conjugate for complex A. AH :≡ (A)⊤ =
A⊤ is called conjugate/hermitian transpose.
Definition: symmetry A is symmetric if A⊤ = A. We
say it is skew-symmetric if A⊤ = −A.
Definition: hermitian A is hermitian if AH = A.
Theorem: 2.6 (AH)H = A & (αA)H = αAH &
(A + B)H = AH + BH & (AB)H = BHAH .
Theorem: 2.7 A, B (square) symmetric: AB = BA
& AHA and AAH are symmetric (for arbitrary A)
Corollary: 2.8 Am×n, Bn×p, y = d(y1 ... yn): yB =

y1b1 + ... + ynbn - e⊤
i B = bi. And AB =


a1B
...

amB



scalar product, norm, lenth, angles
See at later/generalized section. Chapter 2.4 just instan-
ciation.
outer product, orthogonal projections on a line
See at later/generalized section. Chapter 2.4 just instan-
ciation.

matrices as linear maps
Am×n defines map: A : En → Em, x → Ax. We
have characteristics: A(γx + ∼x) = γ(Ax) + (A∼x).
Definition: The above is characteristic for linear maps.
The domain is En. The codomain is Em.
Definition: image im A :≡ {Ax ∈ Em; x ∈ En}
Definition: kernel ker A := {x ∈ En|Ax = 0}

inverse of a matrix
Definition: ivertibility An×n is invertible if some
Xn×n exists so that AX = I = XA. X is denoted
A−1 as inverse of A.
Theorem: 2.16 A invertible → A−1 is unique
Theorem: 2.17 An×n : A is invertible if rank A = n
& more
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Theorem: 2.18 An×n and Bn×n regular: A−1 regu-
lar and (A−1)−1 = A. AB is regular and (AB)−1 =
B−1A−1. AH regular and (AH)−1 = (A−1)H .
We may compute A−1 if exists by solving AX = I.
Instead of X and I we may also choose the identity col-
umn vectors and x.

orthogonal/unitary matrices
Definition: unitary/orthogonal An×n is unitary if
AHA = In. It is orthogonal if A⊤A = In.
Notice, for An×m, we only have AHA = I for unitary
columns. We only have AAH = I if n = m.
Definition: A ∈ En×n is normal ⇔ AHA = AAH .
Theorem: 2.20 A, B ∈ En×n unitary/orthogonal: A
regular and A−1 = AH . AAH = In. A−1 is unitary.
AB is unitary.
Lemma: A ∈ Em×n. AHA ∈ En×n is hermititan and
positiv semidefinit.
Theorem: 2.21 An×n unitary/orthogonal: linear map
of A is length preserving (isometric) and angle preserv-
ing: Ax = x, 〈Ax, Ay〉 = 〈x, y〉.

structured matrices
Apparently not relevant. (Only in script.)

LU decomposition

Gauss elimination as LU decomposition
Regular A. Gauss elimination ⇝ U (upper triangular
matrix - row echelon form). For L we have the coeffi-
cients during Gauss elimination (only subtracting rows).
The diagonal of L has only 1s. We have A = LU - LU
decomposition.
Row changes necessary: P corresponding permutation
matrix. Then: PA = LU. If not row changes: P = I.
Theorem: 3.1 Square SLE Ax = b with regular A:
PA = LR, Lc = Pb, Rx = c. Then, x for some A
may be easily computed for various b.
Solving for some x: Ax = b ⇒ PAx = Pb ⇒
LUx = Pb. Solve for c first: L=Pb (forward substi-
tution). Solve for x second: Ux = c (backward substi-
tution).

general case
Theorem: 3.3 Ax = b a m × n SLE: Pm×m, Rm×n,
Lm×m.

Corollary: 3.4 Am×n with rank A = r:
∼
Lm×r and

∼
Ur×n and Pm×m with

∼
L

∼
U = PA.

block LU decomposition & LU updating
Not done.

Cholesky decomposition
Not done.

vector spaces

definition
Definition: Vectorspace (aslo linear space) V over
E(:≡ R or C): not empty set with addition x, y ∈
V → x + y ∈ V (inner operation) and multiplication
α ∈ E, x ∈ V → αx ∈ V (outer operation) as well as
eight axioms:

1. x + y = y + x (∀x, y ∈ V )
2. (x + y) + z = x + (y + z) (∀x, y, z ∈ V )
3. ∃o ∈ V : x + o = x (∀x ∈ V )
4. ∀x ∈ V ∃ − x ∈ V : x + (−x) = o
5. α(x + y) = αx + αy (∀α ∈ E, ∀x, y ∈ V )
6. (α + β)x = αx + βx (∀α ∈ E, ∀x, y ∈ V )
7. (αβ)x = α(βx) (∀α ∈ E, ∀x, y ∈ V )
8. 1x = x (∀x ∈ V )

commutative group regarding addition i(first four ax-
ioms)
Elements of V : vectors. o ∈ V : zero vector. Elements
of E: scalars.
For E = R: real vector space. For E = C: complex
vector space.
Theorem 4.1: V over E. ∀x, y ∈ V and ∀α ∈ E:
0x = o, αo = o, αx = o ⇒ α = 0 ∨ x = 0, (−α)x =
α(−x) = −(αx).
Theorem 4.2: ∀x, y ∈ V ∃z ∈ V : x + z = y (z
unique)
Definition subtraction: V . ∀x, y ∈ V : y − x :≡
y + (−x).
Among others, those are vector spaces: vectors, ma-
trices, continuous real functions, polynomials, real se-
quences

subspaces, spanning systems
Definition: ∅ ∕= U ⊆ V subspace of V if closed under
addition and scalar multiplication: x + y ∈ U, αx ∈ U
(∀x, y ∈ U, ∀α ∈ E).
Theorem 4.3: A subspace is a vector space itself.
U1, ..., Un subspaces over K. Then, U1 + ... + U2 :=
{α1x1 + ...+αnxn|αi ∈ R, xi ∈ Ui} is a vector space.
Theorem 4.4: A ∈ Rm×n, L0 solution set for x ∈ Rn

for Ax = o: L0 subspace of Rn.
Definition linear combination: V over E. a1, ..., al ∈
V .
x :≡ γ1a1 + ... + γlal =

l

k=1 γkak with γ1, ..., γl ∈
E is linear combination of a1, ..., al.
Definition span: Set of all linear combinations of
a1, ..., al is the subspace spanned by a1, ..., al:
span {a1, ..., al} :≡ {

l

k=1 γkak; γ1, ..., γl ∈ E}
Infinite sequence S or S ⊂ V :
span S :≡ {

m

k=1 γkak; m ∈ N; a1, ..., am ∈
S; γ1, ..., γm ∈ E}
a1, ..., al or S is called spaning set of the span.

linear dependence, bases, dimensions
Definition linear dependence: a1, ..., al ∈ V linearly
dependent if γ1, ..., γl ∈ E not all zero: γ1a1 + ... +
γlal = o. But if γ1 = ... = γl = 0, then linearly
dependent.
Lemma 4.5: l ≥ 2: a1, ..., al linearly dependent ⇔
one vector linear combination of others
Definition linear dpendence: Infinite set of vectors lin-
early independent ⇔ each subset linearly independent.
Definition basis: Linearly independent spanning set of
V is called basis of V .
n columns b1, ..., bn ∈ En of Bn×n basis of En ⇔ B
regular.
NOW: VECTOR SPACES WITH FINITE SPAN-
NING SETS

Lemma 4.6: Finite spanning set of non-trivial V ⇔
basis as subset of spanning set exist

Lemma: 4.7 V with finite spanning set: all bases of V
same number of vectors.
Definition: Number of basis vectors (in each basis)
of V with finite spanning set is called dimension of V :
dim V . Such V is finite-dimensional. For dim V = n,
V is called n-dimensional.
Lemma: 4.8 If {b1, ..., bm} spans V : Every set
{a1, ..., al} ⊂ V of l > m vectors is linearly depen-
dent.
Lemma: 4.9/.11 Every set of linearly independent vec-
tors from V with finite spanning set can be extended to
a basis of V .
Corollary: 4.10 V with finite dimension: All sets of
n = dim V linearly independent vectors are a basis of
V .
Theorem: 4.12 {b1, ..., bn} ⊂ V is basis of V if and
only if ∀x ∈ V x =

n

k=1 ζkbk for unique ζk.
Definition: cooridnates ζk for x are called coordinates
of x regarding basis {b1, ..., bn}. ζ = (ζ1 ... ζn)⊤

is called coordinate vector. x =
n

k=1 ζkbk is called
representation in coordinates of x.
Definition: complementary subspaces Subspaces U and
U ′ of V with ∀x ∈ V : x = u+u′ with u ∈ U, u′ ∈ U ′

are called complementary (subspaces of V ). V then is
direct sum: V = U ⊕ U ′.

basis change, coordinate transformation
{b1, ..., bn} ’old’ basis of V . {b′

1, ..., b′
n} ’new’ basis of

V .
Definition: b′

k =
k

i=1 τikbi, k = 1, ..., n. Tn×n =
(τik) is transformation matrix of change of basis.
In k-th column of T: coordinates of k-th new basisvec-
tor regarding ’old’ basis.
Theorem: 4.13 x ∈ V . ζ = (ζ1 ... ζn)⊤ coorid-
nate vector ’old’ basis. ζ′ = (ζ′

1 ... ζ′
n)⊤ coorid-

nate vector ’new’ basis.
n

i=1 ζibi = x =
n

k=1 ζ′
kb′

k.
Then: ζi =

n

k=1 τikζ′
k or rather ζ = Tζ′. Because T

regular: ζ′ = T−1ζ.

linear maps

For maps generally:
Definition: image/range F : X → Y . F (x) is the
range/image of F : F (X) = im F :≡ {F (x) ∈ Y |x ∈
X} ⊆ Y .
Definition: surjectivity If F (X) = Y , then F is on Y :
surjective.
Definition: injectivity F (x) = F (x′) ⇒ x = x′: in-
jective (one-to-one).
Definition: bijectivity If surjective and injective: bijec-
tive. If F bijective, the inverse map F −1 is defined.

definition, matrix representation
Definition: F : X → Y, x → F x (X and Y vec-
tor spaces over E) is called linear if ∀x,

∼
x ∈ X and

∀γ, β ∈ E: F (βx + γ
∼
x) = βF x + γF

∼
x:

• F (x + ∼
x) = F x + F

∼
x

• F (γx) = γ(F x)

X is domain, Y is image space/codomain.
If X = Y one has a self-map. If Y = E, F is called lin-
ear functional. If X and Y function spaces, F is called
linear operator.
Examples are evaluation map, differential operator, mul-
tiplication operator.
Arbitrary F : X → Y . dim X = n and dim Y = m.
{b1, ..., bn} basis of X . {c1, ..., cm} basis of Y .
Definition: Images of basis of X (F bl ∈ Y ) as linear
combination of ck: F bl =

m

k=1 aklck, l = 1, ..., n.
Am×n = (akl) is called matrix for F relative to the
given bases in X and Y .
Notice, l-th column of A: cooridnates of image of l-th
basis vector of X relative to chosen basis of Y .
Also, to every A ∈ Em×n corresponds a unique F for
given bases.
IMPORTANT: We have η = Aζ (neu=Aalt).
Definition isomorphism: If F : X → Y is (einein-
deutig), it is an isomorphism. If also X = Y : automor-
phism:
Lemma: 5.1 F : X → Y isomorphism ⇒ F −1 : Y →
X also linear and isomorphism.
Definition coordinate mapping: κX : X → En, x → ζ
is bijective and linear, thus an isomorphism. It assigns
each x ∈ X , its coordinate vector regarding some basis
B.
This commutative diagram helps:

Corollary 5.2: F ismorphism. For fixed bases as A.
Then, A regular and inverse map F −1 and A−1.
Theorem 5.3: X, Y, Z vector spaces over E. F : X →
Y and G : Y → Z linear. Then, G ◦ F : X → Z also
linear. If A, B map matrices for fixed bases i X, Y, Z
for F, G. Then for G ◦ F : BA.

kernel, image, rank
F : X → Y , dim X = n, dim Y = m
Definition : kernel of F - ker F - is inverse image of
o ∈ Y : ker F :≡ {x ∈ X; F x = o} ⊆ X .
Lemma 5.4: ker F is subspace of X . im F is sub-
space of Y .
Lemma 5.5: U subspace of X ⇒ F U subspace of Y
&& W subpsace of im F ⇒ F −1W subspace of W .

• ker A = general solution of the homogenous
SLE Ax = o.

• im A = set of right-hand sides b for which
Ax = b has solution.

Theorem 5.6: F is injective if and only if ker F =
{o}.
Theorem 5.7 - dimension formula: Assuming
dim X < ∞: dim X − dim ker F = dim im F .

2



Definition rank: rank of linear map F is dimension of
image of F : rank F :≡ dim im F .
Corollary 5.8:

1. F : X → Y injective ⇔ rank F = dim X
2. F : X → Y bijective (isomophism) ⇔

rank F = dim X = dim Y
3. F : X → X bijective (automorphism) ⇔

rank F = dim X

Definition: Two vector spaces are called isomorph if an
isomorphism F : X → Y exists.
Theorem 5.9: Two vector spaces with finite dimension
are isomorph if and only if they have the same dimen-
sion.
Corollary 5.10: F : X → Y , G : Y → Z linear maps
with dim X, dim Y < ∞.

1. rank F G ≤ min{rank F, rank G}
2. G injective ⇒ rank GF = rank F
3. F surjective ⇒ rank GF = rank G

matrices as linear maps
A = (akl), m × n matrix, n columns: a1, ..., an.
Definition: space spanned by columns of A - R(A) :≡
span {a1, ..., an} - is called column space or range
of A. The solution space L0 of the homogenous SLE
Ax = o is called nullspace of A: N (A).
Theorem 5.11: If A is understood as a linear map:
im A = R(A) and ker A = N (A). Ax = b has a
solution if and only if b ∈ R(A). A solution is unique
if and only if N (A) = {o}.
Theorem 5.12: dim L0 ≡ dim N (A) ≡
dim ker A = n − r.
Definition row space: The space spanned En by row
vectors of A is called row space of A.
Theorem 5.13: rank of Am×n:

• amount of pivot elements in row echelon form
• rank of linear map A : En → Em as dim im A
• dimension of column space (column rank)
• dimension of row space (row rank)

Corollary 5.14: rank A⊤ = rank AH = rank A.
Theorem 5.15: Column space of Am×n: im A ≡
R(A) = R(

∼
A) = span {an1, ..., anr} with ank as

pivot columns of A and
∼
A as m × r matrix from those.

Theorem 5.16: A ∈ Em×n, B ∈ Ep×m:

• rank BA ≤ min{rank B, rank A}
• rank B = m(≤ p) ⇒ rank BA = rank A
• rank A = m(≤ n) ⇒ rank BA = rank B

Corollary 5.17: A ∈ Em×m, B ∈ Em×m:

• rank BA ≤ min{rank B, rank A}
• rank B = m ⇒ rank BA = rank A
• rank A = m ⇒ rank BA = rank B

Theorem 5.18: Equivalent for A ∈ En×n

• A is invertible
• A is regular
• rank A = n
• the n column vectors of A are linearly indepen-

dent

• the n row vectors of A are linearly independent
• im A ≡ R(A) = En

• ker A ≡ N (A) = {o}
• map A : En → En is an automorphism
• A transformation matrix of coordinate transfor-

mation in En

affine spaces, general solution inhomogenous SLE
Definition affine (sub)space: U ⊂ V , u0 ∈ V .
u0 + U :≡ {u0 + u|u ∈ U} is called affine (sub)space.
Definition affine mapping: F : X → Y linear map
and y0 ∈ Y . H : X → y0 + Y, x → y0 + F x is called
affine map.
Theorem 5.19: x0 any solution of Ax = b. L0 the
general solution of Ax = o. Then, general solution Lb
of Ax = b is affine subspace Lb = x0 + L0.

map matrix for coordiante transforamtion
X and Y vector spaces with dimension n and m.

• F : X → Y, x → y - linear map
• A : En → Em, ζ → η - some transformation

matrix for F
• T : En → En, ζ′ → ζ - transformation matrix

in En

• S : Em → Em, η′ → η - transformation matrix
in Em

For B of F in new basis in Em and En: B = S−1AT
and A = SBT−1. With rank F = rank A =
rank B.
Definition similarity: n×n matrices A and B are sim-
ilar if some regular T exists so that B = T−1AT and
A = TBT−1. A → B = T−1AT is called similarity
transformation.
Theorem 5.20: F : X → Y linear map. dim X = n,
dim Y = m, rank F = r. Then, transformation ma-

trix A =
Ir 0

0 0


.

vector spaces with scalar product

normed vector spaces
Definition norm: For some vector space V . A norm is
a function . : V → R, x → x with three character-
istics:

1. positiv definit: x ≥ 0 ∀x ∈ V & x = 0 ⇒
x = 0

2. homogenous in the absolut value: αx =
|α|x ∀x ∈ V, α ∈ E

3. triangle inequality: x + y ≤ x + y
∀x, y ∈ V

V with a norm: normed vector space/normed linear
space

vector spaces with scalar product
Definition scalar product: Scalar product in real or
complex vector space is a function 〈., .〉 : V × V →
E, x, y → 〈x, y〉 with:

1. linear in second factor: 〈x, y + z〉 = 〈x, y〉 +
〈x, z〉 ∀x, y, z ∈ V & 〈x, αy〉 = α〈x, y〉
∀x, y ∈ V, α ∈ E.

2. hermitian: 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V (symmet-
ric for real)

3. positiv definit: 〈x, x〉 ≥ 0 ∀x ∈ V & 〈x, x〉 =
0 ⇒ x = 0

V with scalar product: vector space with scalar/inner
product.
Definition: V finite dimension:

• E = R: Euclidean vector space / orthogonal vec-
tor space

• E = C: unitary vector space

Definition induced norm: Induced norm/length of
x ∈ V with scalar product: x :≡


〈x, x〉.

Theorem 6.1 - Cauchy-Bunjakovski-Schwarz inequal-
ity: |〈x, y〉| ≤ xy for all x, y ∈ V . Equality if
and only if x, y linearly dependent.
Definition angle: Angle ϕ (0 ≤ ϕ ≤ π) between
x, y ∈ V : ϕ :≡ arccos Re〈x,y〉

xy . x, y ∈ V are orthog-
onal (perpendicular) if and only if 〈x, y〉 = 0, x ⊥ y.
M, N ⊆ V are orthogonal if and only if 〈x, y〉 = 0 for
all x ∈ M, y ∈ N : M ⊥ N .
Theorem 6.2 - pythagorean theorem: x ⊥ y ⇒
x ± y2 = x2 + y2 for all x, y in a vector space
with scalar product.

orthonormal bases
Theorem 6.3: Set M of pairwise orthogonal vectors is
linearly independent if o ∕∈ M .
Definition: Basis is orthogonal if basis vectors pairwise
orthogonal: 〈bk, bl〉 = 0 if k ∕= l. It is orthonormal if
additionally length is 1: 〈bk, bk〉 = 1 for all k.
Definition Kronecker symbol: δkl :≡

 0,k ∕=l
1,k=l

. Thus:
〈bk, bl〉 = δkl.
Theorem 6.4: V n-dimensional vector space with
scalar product and orthonormal basis{b1, ..., bn}. For
all x ∈ V : x =

n

k=1〈bk, x〉bk. This means: For the
coordinates for some orthonormal basis we simply have
ζk = 〈bk, x〉.

x =
n

k=1〈bk, x〉bk =
n

k=1 bk(bH
k x) =

(
n

k=1 bkbH
k )x Thus: In =

n

k=1 bkbH
k .

Theorem 6.5 - Parseval’s Theorem: ζk :≡ 〈bk, x〉 and
ηk :≡ 〈bk, y〉 (k = 1, ..., n). 〈x, y〉 =

n

k=1 ζkηk =
ζHη = 〈ζ, η〉. Thus, the scalar product of two vec-
tors equals the euclidean scalar product of its coordi-
nate vectors. Hence: x = ζ, ∠(x, y) = ∠(ζ, η),
x ⊥ y ⇔ ζ ⊥ η.
Algorithm 6.1 - Gram-Schmidt process: {a1, a2, ...}
finite or countably finite set of vectors. We compute a
same-sized set {b1, b2, ...}:

• b1 :≡ a1
a1

•
∼
bk :≡ ak −

k−1
j=1 〈bj , ak〉bj

• bk :≡
∼
bk


∼
bk

for k = 2, 3, ...
Theorem 6.6: The vectors b1, b2, ... computed
with Gram-Schmidt are normed and pairwise or-
thogonal. After k septs: span{a1, a2, ..., ak} =
span{b1, b2, ..., bk}. If {a1, a2, ...} is a basis of V
⇒ {b1, b2, ...} is an orthonormal basis of V .
Corollary 6.7: For a vector space with finite or count-
ably finite dimension, an orthonormal basis exists.

orthogonal comlement
Corollary 6.8: In a finite-dimensional (our countably
dimensional) vector space with scalar product, every set
of orthonormal vectors can be extended to an orthonor-
mal basis.
Definition: V finite-dimensional with scalar prod-
uct. U ⊂ V . U⊥ (U perp) is orthogonal sub-
space/orthogonal complement of U . We have V =
U ⊕U ′, U ⊥ U⊥. Explicitly: U⊥ :≡ {x ∈ V |x ⊥ U}.
V then is the direct sum of orthogonal complements.
Remember (U⊥)⊥ = U and dim U⊥ + dim U =
dim V .
Theorem 6.9: m × n matrix. A with rank r:

• N (A) = (R(AH))⊥ ⊂ En

• N (AH) = (R(A))⊥ ⊂ Em

• N (A) ⊕ R(AH) = En

• N (AH) ⊕ R(A) = Em

• dim R(A) = r
• dim R(AH) = r
• dim N (A) = n − r
• dim N (AH) = m − r

Definition: The two paris N (A), R(AH) and
N (AH), R(A) are called the four fundamental sub-
spaces of A.

orthogonal/unitary base change
Theorem 6.10: Transformation matrix if change of ba-
sis between orthonormal bases is unitary (E = C) or
orthogonal (E = R). - I = THT.
Theorem 6.11: Orthogonal/unitary change of basis.
Old (ζ) and new (ζ′) coordinate vectors linked: ζ = Tζ′

and ζ′ = THζ.
For V some En: Basis vector as columns of orthogo-
nal/unitary matrices: B = B′TH , B′ = BT.
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Theorem 6.12: η and η′ pair of old/new coordinates:
〈ζ′, η′〉 = 〈ζ, η〉. Especially: ζ′ = ζ, ∠(ζ′, η′) =
∠(ζ, η), ζ′ ⊥ η′ ⇔ ζ ⊥ η.

orthogonal/unitary maps
Definition: X, Y unitary/orthogonal vector spaces. F :
X → Y unitary/orthogonal if 〈F x, F y〉Y = 〈x, y〉X

for any x, y ∈ X .
Theorem 6.13: F : X → Y orthogonal/unitary.

1. F xY = xX (length preserving/isometric)
2. x ⊥ y ⇒ F x ⊥ F y (angle preserving)
3. ker F = {o} - F is injective

If dim X = dim Y < ∞. Also:

4. F is isomorphism
5. {b1, ..., bn} orthonormal basis of X ,

{F b1, ..., F bn} orthonormal basis of Y .
6. F −1 unitary/orthogonal.
7. A unotariy/orthogonal for orthonormal bases in

X, Y

Lemma 6.14: F : X → Y, G : Y → Z two uni-
tary/orthogonal isomorphisms of finite dimensional vec-
tor spaces with scalar product, so G ◦ F : X → Z.
Lemma 6.15: V n-dimensional vector space with
scalar product with orthonormal basis, κV : V → En is
unitary/orthogonal isomorphism.
Lemma 6.16: A ∈ En×n is unitary/orthogonal if and
only if, A : En → En is unitary/orthogonal.

operators and matrices
Definition: X, Y vector spaces with norms .X , .Y .
F : X → Y (linear map/operator) is called bounded if
γF ≥ 0 with F (x)Y ≤ γF xX for all x ∈ X . All
such maps F between X, Y : L(X, Y ).

ToDo!!! Script pages
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least square and QR decomposition

orthogonal projections
Definition: P : Em → Em is called projection or pro-
jector of P2 = P. P is called orthogonal projection
if ker P ⊥ im P or N (P) ⊥ R(P). Otherwise the
projection is oblique.
Lemma 7.1: P projector ⇒ I − P projector and
im (I − P) = ker P and ker (I − P) = im P
Theorem 7.2: P porojection. Equivalent:

• P orthogonal projector
• I − P orthogonal projector
• PH = P

Lemma 7.3: Am×n, rank A = n(≤ m) ⇒ AHA is
regular
Theorem 7.4: orthogonal projection PA : Em →
im A ⊆ Em on column space R(A) ≡ im A
of Am×n with rank A = n(≤ m): PA :≡
A(AHA)−1AH .

Corollary 7.5: orthogonal projection PQ : Em →
im Q ⊆ Em on column space R(Q) ≡ im Q
of Qm×n = (q1 ... qn) with orthonormal columns:
PQ :≡ QQH . Thus: PQ =

n

j=1 qj〈qj , y〉.
With the pythagoren theorem, this can be reasoned:
Theorem 7.6: orthogonal projection P. y − Py2 =
min

z∈im P
y − z2.

Analogous also with different scalar products, because
the pythagorean theorem still holds.

least squares
Definition: Ax = y, Am×n, m > n - overdetermined
linear system. A solution only exists if y ∈ R(A).
If not solution exists, one chooses x ∈ En so that the
residual/residual vector r :≡ y − Ax has minimal Eu-
clidean norm (2-norm/length). Such x is called least
square solution of Ax = y.
Assuming columns of A to be linearly independent
(ker A = {o}, AHA regular): x = (AHA)−1AHy
and AHAx = AHy. Those are called normal equa-
tions.
Definition: (AHA)−1AH is called pseudo-inverse.
Theorem 7.7: A ∈ Em×n, rank A = n ≤ m,
y ∈ Em. The overdetermined SLE Ax = y has a
unique solution x in the sense of the least square prob-
lem: Ax − y2 = min

∼
x∈En

A∼x − y2. x may be com-

puted by solving the regular system of the normal equa-
tions. The residual vector is orthogonal to R(A).
Lemma 7.8: Let an+1 :≡ y. Do Gram-Schmidt
on a1, ..., an, an+1. Then:

∼qn+1 :≡ y − Ax =
r ⊥ R(A) = span{a1, ..., an}. The system Ax =
y − ∼qn+1 is then uniquely solvable for x.

QR decomposition
Consider A with linearly independent columns
a1, ..., an. Remember the Gram-Schmidt pro-
cess. We may write a1 = q1a1 and ak =
qk ∼qk +

k−1
j=1 qj〈qj , ak〉. We define the coeffi-

cients r11 = a1, rjk = 〈qj , ak〉 (j = 1, ..., k − 1),
rkk :≡  ∼qk for k = 2, ..., n. We add rjk = 0
(j = k + 1, ..., n). We can then write: ak =
qkrkk +

k−1
j=1 qrrjk =

k

j=1 qjrjk =
n

j=1 qjrjk.
We then may define A :≡ (a1 ... an) and

Q :≡ (q1 ... qn) and R :≡




r11 r12 ... r1n

0 r22 ... r2n

... ... ... ...
0 ... 0 rnn



.

Then, we may rewrite the last formula to A = QR.
Definition QR decomposition: The decomposition
above of Am×n with rank n ≤ m in a m × n matrix Q
with orthonormal columns and a n × n upper triangu-
lar matrix with positive diagonal elements is called QR
decomposition of A.

We may extend Q to an orthonormal basis of En:
∼
Q :≡

(Q|Q⊥) :≡ (q1 ... qn|qn+1 ... qm). We may ex-

tend R with m − n zero columns:
∼
R :≡ ( R

O ). Then:

A = QR =
∼
Q

∼
R.

Definition: The just introduced ’extended’ form is

sometimes called QR decomposition and the earlier
mentioned form QR factorization.
Lemma 7.9: a1, ..., an columns of A×n. Gram-
Schmidt leads to QR decomposition. Adding y to
A leads to the residual r ⊥ R(A): r = y −n

j=1 qj〈qj , y〉 = y − QQHy. For x as the least
square solution, we have Rx = QHy.

QR decomposition with pivoting

ToDo!!! Obsidian
determinants

permutations
Definition permutation: A permutation of n elements
is a unique map of {1, ..., n} onto itself. The set of all
such permutations is Sn (symmetric group).
This formula is unusable for practical use, because it can
only be computed in O(n! · n). It would take unreason-
able amount of time to compute determinants in this way
(about 75 years for n = 20).
Definition transposition: Permutation with only two
elements switched.
Theorem 8.1: There are n! permutations in Sn.
Theorem 8.2: For n > 1, every permutation p can be
expressed as product of transpositions tk of neighboring
elements: p = tν ◦ tν−1 ◦ ... ◦ t2 ◦ t1. This is normally
not unique. But the number of transpositions is.
Definition sign: permutation p. sign p =

 +1,ν event
−1,ν uneven

definition, characteristics
Definition determinant: An×n. Determinant:
det A :=


p∈Sn

sign p · a1,p(1)a2,p(2) · · · an,p(n)
for all n! permutations.
Theorem 8.3: The determinant is a function det :
En×n → E, A → det A with three characteristics:

1. linearity in each row. For all
γ, γ′ ∈ E and l ∈ {1, ..., n}:

det





a11 ... a1n

... ... ...
γal1 + γ′al1 ... γaln + γ′aln

... ... ...
an1 ... ann



 =

γdet


a11 ... a1n

... ... ...
an1 ... ann


+

γ′det


a11 ... a1n

... ... ...
an1 ... ann



2. switching two rows changes the sign of det(A)
3. det(I) = 1

Theorem 8.4: Further characteristics:

4. A has zero column: det (A) = 0
5. det(γA) = γndet(A)
6. A has two identical rows: det(A) = 0
7. Adding multiply of one row to another row does

not change det(A).
8. A diagonal matrix: det(A) = product of diago-

nal elements

9. A triangular matrix: det(A) = product of diag-
onal elements

Notice for the Gauss algorithm: Sign of determinant
changes when rows switched. Otherwise unchanged.
Theorem 8.5: An×n: det A ∕= 0 ⇔ rank A =
n ⇔ A regular. Applying the Gauss-algorithm to
A, ν being the number of row changes: det A =
(−1)ν

n

k=1 rkk.
Algorithm 8.1: Apply Gauss-algorithm to An×n.
Then, the formula of theorem 8.5 holds.
Algorithm 8.1 is usually much faster than using the per-
mutation definition. That’s because Gauss elimination
works in O(n3), compared to about O(n! · n) of the
implicit computation of the definition/permutation for-
mula.
Theorem 8.6: The defined determinant is the only
function with characteristics (1)-(3).
Theorem 8.7: A, B ∈ En×n. det(AB) = det(A) ·
det(B).
Theorem 8.8: An×n regular. det(A)−1 = det(A−1).
Theorem 8.9: det(A⊤) = det(A) and det(AH) =
det(A)
Corollary 8.10: Characteristics (1),(2),(4),(6),(7) are
also valid for columns (instead of rows).

expansion by rows and columns
Definition: An×n. For akl, we define (n−1)×(n−1)
matrix A[k,l] by removing row k and colum l from A.
Cofactor κkl :≡ (−1)k+ldet A[k,l].
Lemma 8.11: A. Only akl ∕= 0 not zero in l column.
Then det A = aklκkl.
Theorem 8.12: An×n. For all k, l ∈ {1, ..., n}:
det A =

n

i=1 akiκki (expansion along row k) and
det A =

n

i=1 ailκil (expansion along colum l).
block triangular matrices

Theorem 8.13: For a 2 × 2 block matrix
det

A B
O D


= det A · det D or rather

det
A O

C D


= det A · det D
Corollary 8.14: The determinant of a block matrix is
the product of the determinants of its diagonal blocks.

eigenvalues and eigenvectors

Intuition: We search vectors, which give directions in
which some transformation only scales the space but not
rotates it. Those are eigenvectors. The scaling factor is
the eigenvalue.
V finite dimensional, F : V → V, x → F x

eigenvalues/eigenvectors of matrices/linear maps
Definition eigenvalue/eigenvector: λ ∈ E is eigenvalue
of F if an eigenvector v ∈ V, v ∕= 0 with F v = λv ex-
ists.
Definition eigenspace: λ eigenvalue. Eλ :≡ {v ∈
V |F v = λv}. Eigenspace is set of eigenvectors with
zero vector.
Definition spectrum: Set of all eigenvalues of F . De-
noted σ(F ).
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Lemma 9.1: F : V → V linear map, κV : V →
En, x → ζ coordinate map of V (for some basis),
A = κV F κ−1

V transformation matrix. Then: λ eigen-
value and x eigenvector of F ⇔ λ eigenvalue and ζ
eigenvector of A.
v for λ is not unique, because F v = λv ⇔ F (αv) =
λ(αv). Thus, dim Eλ ≥ 1.
If (F − λI)v = o has a non-trivial solution λ is an
eigenvalue. Eλ is the general solution.
Lemma 9.2: λ eigenvalue of F : V → V if and only
if F − λI has non-trivial kernel. Eλ = ker (F − λI).
Eλ ∕= {o}, Eλ ⊆ V .
Definition geometric multiplicity: Geometric multi-
plicity of λ is dimension of Eλ.
Corollary 9.3: λ eigenvalue of A ∈ En×n if A − λI
singular. Eλ = ker (A − λI) ∕= {o}. Geometric
multiplicity of λ: dim Eλ = dim ker (A − λI) =
n − rank (A − λI).
Definition characteristic polynomial and equation:
XA(λ) :≡ det (A − λI) is characteristic polynomial
of A ∈ En×n. XA(λ) = 0 is the characteristic equa-
tion.
Definition trace: The sum of the diagonal elements of
A: trace A :≡ a11 + a22 + ... + ann.
Lemma 9.4: XA(λ) ≡: det (A − λI) = (−λ)n +
trace A(−λ)n−1 + ... + det (A)
Theorem 9.5: y ∈ E is eigenvalue of A ∈ En×n if
and only if λ root of characteristic polynomial/solution
of characteristic equation.
According to the fundamental theorem of linear algebra,
the characteristic polynomial of degree n has n (usually
complex) roots. Becuase then complex eigenvectors ex-
ists, we usually consider matrices with real entries also
as complex matrices.
Definition algebraic multiplicity: The algeboraic mul-
tiplicity of some eigenvalue λ is the multiplicity of λ as
root of XA.
Notice: algebranic and geometric multiplicity are not
necessarily equal!
Algorithm 9.1 - eigenvalue/-vector via XA: A ∈
Cn×n.

1. Compute XA :≡ det (A − λI)
2. Compute roots λ1, ..., λn of XA (with their alge-

braic multiplicity).
3. For each λk: Determine basis of ker(A − λI) =

Eλk .

Lemma 9.6: A ∈ En×n is singular ⇔ 0 ∈ σ(A).
similarity transformation - spectral decomposition

F : V → V, x → F x. A, B transformation matri-
ces regarding two different bases. Then, A and B are
similar. A → B = T−1AT is called similarity trans-
formation. We ask: How far A may be simplified by
chosing an appropriate similarity transformation.

Theorem 9.7: Similar matrices have the same char-
acteristic polynomial. Thus, they have the same deter-
minant, trace, eigenvalue. Also the geometric and al-
gebraic multiplicities for some λ is identical for similar
matrices.
Lemma 9.8: A transformation matrix for F : V → V
is diagonal if and only if the chosen basis of V consists
only of eigenvectors.
Definition: A basis of eigenvectors of F (or A) is an
eigenbasis of F (or A).
Theorem 9.9: For A ∈ En×n a similar diagonal matrix
Λ exists if and only if an eigenbasis exists for A. For
V :≡ (v1 ... vn) with (v1, ..., vn) as the eigenba-
sis, we have AV = VΛ and A = VΛV−1. Accord-
ingly, if some V and Λ exists, the diagonal elements of
Λ are eigenvalues/the columns of V are eigenvectors of
A.
Definition spectral decomposition: A = VΛV−1

(with diagonal Λ) is called spectral/eigenvalue decom-
position of A. If for some A such a Λ exists, A is
diagonalizable.
Corollary 9.10: A = VΛV−1. V =
(v1 ... vn). V−1 =


w⊤

1 ... w⊤
n

⊤
. Then:

A =
n

k=1 vkλkw⊤
k . Meanwhile: Avk = vkλ and

w⊤
k A = λw⊤

k .
Definition: w is called left eigenvector of A if w⊤A =
λkw⊤.
Theorem 9.11: Eigenvectors for different eigenvalues
are linearly independent.
Corollary 9.12: If the n eigenvalues of F : V → V
are distinct (n = dim V), an eigenbasis exists. The cor-
responding transormation map is diagonal.
Theorem 9.13: For each eigenvalue, geometric multi-
plicity ≤ algebraic multiplicity.
Theorem 9.14: A matrix is diagonalizable if and only
if for each eigenvalue geometric multiplicity = algebraic
multiplicity.

symmetric / hermitian matrices
Many eigenvalue problems are self-adjoint - meaning
the matrices are real symmetric/hermitian.
Theorem 9.15 - spectral theorem: A ∈ Cn×n hermi-
tian (AH = A)

1. All eigenvalues λ1, ..., λn are real.
2. Eigenvectors for different eigenvalues are pair-

wise orthogonal in Cn.
3. ∃ orthonormal basis of Cn of eigenvectors

u1, ..., un of A.
4. U :≡ (u1 ... un) (unitary). UHAU =

Λ :≡ diag (λ1, ..., λn)

Corollary 9.16: A ∈ Rn×n real (A⊤ = A)

1. All eigenvalues λ1, ..., λn are real.
2. The real eigenvectors for different eigenvalues

are pairwise orthogonal in Rn.

3. ∃ orthonormal basis of Rn of eigenvectors
u1, ..., un of A.

4. U :≡ (u1 ... un) (orthogonal). U⊤AU =
Λ :≡ diag (λ1, ..., λn)

Definition: A hermitian.

• positiv definit: ∀x ∈ En, x ∕= 0 we have
xHAx > 0

• positiv semidefinit: ∀x ∈ En we have xHAx ≥
0.

Notice, such A defines a scalar product in En: f :
En × En, (u, v) → f(u, v) := uHAv.
Theorem: A ∈ En×n hermitian.

• A positiv definit ⇔ all eigenvalues of A > 0
• A positiv semidefinit ⇔ all eigenvalues of A

≥ 0

Theorem: A ∈ En×n is normal ⇔ A is diagonalizable
by a unitary matrix over C.

Jordan canonical form
Not done.

singular value decomposition

Theorem 11.1: A ∈ Cm×n, rank A = r.
∃ unitary U = (u1 ... um) and unitary V =
(v1 ... vn) and Σm×n :≡

Σr O
O O


with Σr :≡

diag (σ1, ..., σr) with σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 =
... = σmin{m,n} = 0 (positive and ordered). So that:
A = UΣVH =

r

k=1 ukσkvH
k .

Columns of U orthonormal eigenbasis of AAH

(AAH = UΣ2
mUH ) (U diagonalizes AAH ).

Columns of V orthonormal eigenbasis of AHA
(AHA = VΣ2

nVH ) (V diagonalizes AHA). We also
have: AV = UΣ and AHU = VΣ⊤.
Furthermore:

• {u1, ..., u1} is basis of im A ≡ R(A)
• {v1, ..., vr} is basis of im AH ≡ R(AH)
• {ur+1, ..., um} is basis of ker AH ≡ N (AH)
• {vr+1, ..., vn} is basis of ker A ≡ N (A)

Those are all orthonormal bases. If A is real, U, V may
be chosen as real orthogonal matrices.
Definition singular value decomposition: The matrix
factorization A = UΣVH =

r

k=1 ukσkvH
k (from

above) is called singular value decomposition (SVD) of
A. σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σmin{m,n} =
0 are called singular values of A. u1, ..., um are called
left singular vectors. v1, ..., vn are called right singular
vectors.

Corollary 11.2: Vr matrix with first r columns of
V. Ur matrix with first r columns of U. Σr leading
r × r matrix of Σ. Compact SVD: A = UrΣVH

r =r

k=1 ukσkvH
k . Um×r and Vn×r with orthonormal

columns. Diagonal elements of Σr positive.
derivation

AHA is diagonalizable (according to the spetral theo-
rem) and all eigenvalues of AHA are ≥ 0, because its
positiv semidefinit.
spectral decomposition of AHA exists because of spec-
tral theorem: AHAV = V Λ, Λ = diag(λ1, ..., λn),
V is unitary, λj ≥ 0 (j = 1, ..., n). We may sort the
eigenvalues: λ1 ≥ λ2 ≥ ... ≥ λr > λr+1 = ... =
λn = 0 (notice, r = rank (AHA) = rank A). And
define σj :=


λj . This is possible, because λj ≥ 0.

Then: AHA (v1 ... vr vr+1 ... vn) =
(v1 ... vr vr+1 ... vn)



σ2
1

...
σ2

2
0

...
0




We may simplify

with AHAVr = VrΣr: AHA (v1 ... vr) =

(v1 ... vr)


σ2

1
...

σ2
2


For Σr we have

Σ−1
r =




1

σ2
1

...
1

σ2
2



 and we know that

V H
r Vr = Ir×r , because the columns of Vr are orthonor-

mal. We get: AHAVr = VrΣ2
r V H

r AHAVr = Σ2
r

(Σ−1
r V H

r aH)(AVrΣ−1
r ) = Ir×r (multiplying

with Σ−1
r left and right) UH

r Ur = Ir×r with
Ur := AVrΣ−1

r ⇒ AVr = UrΣr . Here, Ur is
m × r, Σr is r × r, and Vr is n × r/V −1

r is r × n. This
is the reduced SVD.
We can extend Ur ∈ Em×r to a unitary matrix U ∈
Em×m: U := (Ur|U⊤

r ) with UHU = UUH = Im×m.
Then we have AV = UΣ ⇒ A = UΣV H .

optional/additional stuff

Givens rotations
script, page 63

Householder matrices/reflections
script, page 64

permutation matrices
script, page 64
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