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Part I

Graph Theory

This is a general overview of common definitions:

English term German term meaning

walk Weg/Kantenzug sequence of vertices

trail walk with unique edges

path Pfad (?) walk with unique vertices

closed walk Zyklus walk with same start and end vertex

circuit closed walk with unique edges

cycle Kreis close walk with unique vertices1

Figure 1

• Eulerian trail, sometimes Eulerian path (”Eulerzyklus”/”Euler-Tour”)

• Hamiltonian Path/Hamiltonian Cycle (”Hamiltonkreis”)

1 Fundamentals

The fundamentals of graph theory do majorly overlap with what has already been discussed
in ”Algorithms & Data Structures”. Hence, it will not be reiterated here.

2 Trees

The same applies to trees. As part of this section, Prim’s Algorithm, Kruskal’s Algorithm,
and more is discussed. All relevant topics should still be remembered from the previous
course ”Algorithms & Data Structures”.

3 Paths

Again, the same holds for shortest paths. In ”Algorithms & Data Structures” some various
appraoches and algorithms were discussed, including:

• Dijkstra’s Algorithm

• Floyd-Warshall Algorithm

• Bellman-ford Algorithm

• Johnson’s Algorithm

1without start/end vertex
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4 Connectivity

Here we consider connectivity. The basic concept of a connected graph has also been
already discussed. But the notion of connectivity will be extended here.

Definition connectivity (”Zusammenhang”): Let G = (V,E) be a graph. G is con-
nected (”zusammenhängend”) ⇔ ∀u, v ∈ V, u ∕= v, ∃u-v-path

Definition k-connectivity (”k-Zusammenhang”): Some graph G = (V,E) is said to
be k-connected (”k-zusammenhängend”) if |V | ≥ k + 1 and for all subsets X ⊆ V with
|X| < k, the graph G[V \X] is still connected. The complete graph with k vertices is
k − 1 connected.

This about means that at lest k vertices must be removed so that G is not connected
any more. Any k connected graph also is k − 1-connected. If G contains a vertex with
degree < k, then G can not be k connected.

Definition vertex separator (”(Knoten-)Separator”): A subset X ⊆ V of the vertices
of some G = (V,E) is a (vertex) separator (”(Knoten-)Separator”) if G[V \X] is not
connected.

Definition u-v-separator (”u-v-Separator”): If u, v ∈ V and X ⊆ V \{u, v} is a vertex
(sub)set so that u and v are in separate connected components of G[V \X], then X is
called u-v-separator (”u-v-Separator”).

Definition k-edge-connectivity (”k-Kanten-Zusammenhang”): Some graph G = (V,E)
is called k-edge-connected if for all subsets X ⊆ E with |X| ≤ k, the graph (V,E\X) is
also connected.

In common terms: Some graph is k-edge-connected if at least k edges must be removed
so that the graph is not connected any more. Such a setX ⊆ V is called u-v-edge-separator
(”u-v-Kantenseparator”) if u and and v are in different connected components of (V,E\X).

Notice that: vertex connectivity ≤ edge connectivity ≤ minimal degree of vertices.

Theorem Menger: Let G = (V,E) be some graph and u, v ∈ V, u ∕= v. Then:

• Each u-v-vertex-separator has size at least k ⇔ at least k intern-vertex-
disjunct u-v-paths exist.

• Each u-v-edge-separator has size at least k ⇔ at least k intern-edge-disjunct
u-v-paths exist.

One direction of this theorem is quite clear: If there are k intern-disjunct u-v-paths,
then we have at least k connectivity. The other direction will be shown later.

4.1 cut vertex (”Artikulationsknoten”)

Definition cut vertex: In a 1-connected but not 2-connected graph, by definition, at
least one vertex v must exist so that G[V \{v}] is not connected. Such v are called cut
vertex (”Artikulationsknoten”).

We now consider how cut vertices may be found. For that we consider DFS with its
pre-order and post-order. We assign each edge of the dfs-tree a direction according to
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how it has been traversed during the dfs algorithm. All remaining edges are assigned the
direction according to how they are first discovered, i.e., from the higher pre-order-valued
to the lower pre-order-valued vertex.

Then, we assign each vertex v the value low[v], which is the smallest dfs value which
may be reached with a directed path from v that uses arbitrarily many tree edges and at
most oen of the remaining edges as the last edge of the past. Formally:

low[v] := min

󰀣
dfs[v], min

(v,w)∈E

󰀫
dfs[w], (v, w) is remaining edge

low[w], (v, w) is tree edge

󰀤

To compute those low values we proceed as follows

• compute dfs/pre-order values with dfs

• initialize low values with dfs values

• compute all low values in post-order/reverse pre-order

Then, v is a cut vertex if

• v ∕= root: v has a child in the dfs tree with low[u] ≥ pre[v]

• v = root: v has at least two children in the dfs tree

Proof. We consider some v ∕= root. Notice that the subtrees of the children of v may not
be connected among each other. If they were, there would only be one child as all the
vertices of that one subtree would be reachable (and would be reached during dfs) from
the other subtree.

Second, the subtree of a child with a higher dfs value than v may only be connected
to an area with lower dfs values with a remaining edge as otherwise that area would have
lower dfs values

Then, low[u] ≥ dfs[v] implies that there is no remaining (back) edge from some child’s
subtree with higher dfs-value to a lower-dfs subtree. Hence, if v is removed, that subtree
has no connection to the remaining graph and v must be a cut vertex.

The special case v = root is obvious.

Theorem: For some connected graph G = (V,E) (adjacency list), all cut vertices may
be computed in O(|E|).

This is a simple implementation

1 DFS -Visit(G,v):

2 num = num + 1

3 dfs[v] = num

4 low[v] = dfs[v]

5 isCutVertex[v] = false

6 for all {v,w} in E:

7 if dfs[w] = 0:

8 T = T + {v,w}

9 val = DFS -Visit(G,w)

10 if val >= dfs[v]:

11 isCutVertex[v] = true

12 low[v] = min{low[v], val}

13 else dfs[w] != 0 and {v,w} not in T:

14 low[v] = min{low[v], dfs[w]}
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15 return low[v]

16
17 DFS(G,s):

18 num = 0

19 T = empty set

20 DFS -Visit(G,s)

21 if deg(s) in T >= 2:

22 isCutVertex[s] = true

23 else:

24 isCutVertex[s] = false

4.2 cut edge (”Brücke”)

Definition cut vertex: In a 1-edge-connected but not 2-edge-connected graph, by
definition, at least one edge e must exist so that (V,E\{e}) is not connected. Such e are
called cut edge (”Brücke”).

Lemma: Let G = (V,E) be a connected graph. If {x, y} ∈ E is a bridge/cut edge, then
deg(x) = 1 or x is a cut vertex.

To determine cut edges, we can use the same approach/algorithm idea as to determine
cut vertices. Specifically, we can compute the low values identically. For some edge
e = (v, w) in the dfs-tree including directed remaining edges, e is a cut edge if and only if
low[w] > dfs[v].

This is as then there is no other connection than this edge which connects the subgraph
of w to the subgraph on the other side of v. Remaining edges are obviously never

4.3 block decomposition (”Block-Zerlegung”)

Definition blocks (”Blöcke”): Let G = (V,E) be a connected graph. For e, v ∈ E:

e ∼ f :⇔
󰀫
e = f

∃ common circle through e and f

This is an equivalence relation (”Äquivalenzrelation”). Its equivalence classes
(”Äquivalenzklassen”) are called blocks (”Blöcke”).

Notice that this is defined on the edges, not vertices!

Proof. Reflexivity is given by definition.
Symmetry is trivially given.
Transitivity: We must only consider e ∕= f, e ∕= g, f ∕= g. With e ∼ f, f ∼ g, the

circles with e and f as well as f and g may have shared edges, which makes this more
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complicated. We reason like this:

∃ two edge disjunct paths between ve and vf

∧∃ two edge disjunct paths between vf and v − g

⇒ ¬∃ edge separator between ve and vf of size 1 from V \{ve, vf}
∧¬∃ edge separator between vf and vg of size 1 from V \{vf , vg}

⇒ ¬∃ edge separator between ve and vg of size 1 from V \{ve, vg}
⇒ ∃ ≥ 2 vertex disjunct ve-vg-paths (MENGER)

⇒ ∃ a circle

Lemma: Two blocks can only intersect in one cut vertex (if at all). I.e., there are not
edges between equivalence classes.

We now replace each block with one vertex for that block. Those block vertices are
then connected only to cut vertices. Based on that we define:

Definition block decomposition (”Block-Zerlegung”): T is a bipartite graph with
vertex set V = A ⊎ B with A being the set of cut vertices and B corresponding to the
set of blocks. We define

{a ∈ A, b ∈ B} ∈ E :⇔ a incident to b

5 Cycle graphs

5.1 Eulerian trial

Definition Eulerian trial (”Eulertour”/”Eulerzyklus”): A closed walk in G = (V,E)
(”Zyklus”) which contains every edge exactly once.

The algorithm to find Eulerian trials has been extensively discussed in a previous
course.

Theorem:

• A connected graph G = (V,E) is Eulerian if and only if all degrees are even.

• In a connected Eulerian graph, an Eulerian cycle may be found in O(|E|).

The proof is also omitted as extensively discussed in a previous course.

Theorem Ore’s Theorem: Let G = (V,E), |V | ≥ 3. If ∀v, w ∈ V , v not adjacent to w
we have deg(v) + deg(w) ≥ |V |, then G is Hamiltonian.

This was not mentioned in the lecture but is quite useful. Accordingly, this also has
not been proven.
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5.2 Hamiltonian cycle (”Hamiltonkreis”)

DefinitionHamiltonian cycle (”Hamiltonkreis”): A cycle inG = (V,E), which contains
every vertex exactly once.

Finding Hamiltonian cycles is significantly harder than finding Eulerian trials. The
problem ahs been proven to be NP complete.

Theorem Inclusion-exclusion principle (”Siebformel”/”Prinzip der Inklusion/Exk-
lusin”): For finite sets A1, ..., An with n ≥ 2:

|∪n
i=1Ai| =

n󰁛

l=1

(−1)l+1
󰁛

1≤i1≤...≤il≤n

|Ai1 ∩ ... ∩Ail |

=

n󰁛

i=1

|Ai|−
󰁛

1≤i1<i2≤n

|Ai1 ∩Ai2 |

+
󰁛

1≤i1<i2<i3≤n

|Ai1 ∩Ai2 ∩Ai3 |− ...+ (−1)n+1|A1 ∩ ... ∩An|

This will be formally proven later.

Theorem Direc’s Theorem (”Satz von Dirac”): Each graph G = (V,E) with |V | ≥ 3

and minimal degree δ(G) ≥ |V |
2

Proof. (correctness)
When we discuss some k-(cycle-)path here, k denotes the number of vertices, not of

the number of edges!
First, we show that G is connected. Consider arbitrary u, v ∈ V :

• {u, v} ∈ E: trivial

• {u, v} ∕∈ E and u = v: trivial

• {u, v} ∕∈ E and u ∕= v

If |N(u) ∩N(v)| is not empty, then there is a path of length two between u and v.

Using the inclusion-exclusion principle: |N(u) ∩N(v)| = |N(u)|+ |N(v)|− |N(u) ∪
N(v)|. By assumption the first two summands are ≥ |V |

2 . The latter can be at most
|V |− 2. Hence, the sum is ≥ 2 and u and v are connected via path of length 2.

Second: k-cycle-path in G ⇒ k + 1-path in G (if k < N). This follows directly from
connectivity.

Third: k-path in G ⇒ k + 1-path in G or k-cycle-path in G.

• N(v1) ∕⊆ {v2, ..., vk}: k + 1-path exists

• N(vk) ∕⊆ {v1, ..., vk−1}: k + 1-path exists

• N(v1) ⊆ {v2, ..., vk} and N(vk) ⊆ {v1, ..., vk−1}
We will show that N(vk) always has an element which is left from an element of
N(v1) on the path. We see trivially that can then construct a k-cycle.
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With L(v1) we denote all elements left from elements of N(v1). From |L(v1) ∩
N(vk)| = |L(v1)|+ |N(vk)|− |L(v1)∪N(vk)| we learn that such a combination must

exist. That is as |L(v1)| and |N(vk)| each must be ≥ |V |
2 , and the union must be

≤ |V |− 1. Hence, the cardinality of the intersection is ≥ 1.

The runtime of this algorithm is O(|V |2) as finding a longer cycle takes O(|V |) and we
have to do that |V | times.

5.2.1 Special Cases

Now we consider some special cases in which finding a Hamiltonian cycle is easier.

Grid

Theorem: A n×m grid has a Hamiltonian cycle if and only if n ·m is even.

Proof.

• ⇒: This is easily understood when recognizing that the grid is a chess board and
the graph is bipartite with an uneven number of vertices.

• ⇐: We can provide a constructive proof, which is very obvious.

We can generalize:

Lemma: If G = (A⊎B,E) is a bipartite graph with |A| ∕= |B|, then G does not contain
a Hamiltonian cycle.

Hyper Cube As motivation for this consideration one might think of rotary encoders.
Those encode angles by having a circular sheet, which has holes along the radius. Each
angle range is associated with a specific hole pattern. The question is whether we can
arrange those holes in such a way that only one hole/bit changes in adjacent angle ranges
to enable easy error detection.

We now consider a d-dimensional hyper cube Hd. It has the vertex set {0, 1}d and
an edge exists if both vertices differ in exactly one position. We ask whether Hd has a
Hamiltonian cycle. The answer for d ≥ 2 is yes.

Do provide a constructive proof. For d = 2 we have 00− 10− 11− 01. To extend one
dimension, we simply add the inverse of this and append 0 to the first half/1 to the second
half.

5.2.2 Exponential Algorithm

To compute Hamiltonian cycles in general one could simple try all combinations of which
there are 1

2(n − 1)! = Θ(n!). We now improve that runtime to O(2n), which is still bad
but compared to Θ(n!) not so bad after all.

10



Version 1 Let G = (V,E) with V = [n] wlog. A Hamiltonian cycle exists if an x ∈ N(1)
exists so that a 1-x-path exists which contains all vertices.

We now use dynamic programming and define this dp table:

PS,x :=

󰀫
1, a path from x to 1 exists, which contains all vertices

0, otherwise
,

where S is the vertex set

So, G contains a Hamiltonian cycle ⇔ ∃x ∈ N(1) with P[n],x = 1.
The dp table can be filled with the following recursion. The base case is P{1,x},x =

1 ⇔ {1, x} ∈ E for 1 ∕= x ∈ V .

PS,x = max{PS\{x},x′ |x′ ∈ S ∩N(x), x′ ∕= 1}

1 Hamiltonkreis (G=([n],E)):

2 // Initialisierung

3 for all x in [n], x != 1:

4 P[1,x][x] = (1,x) in E ? 1 : 0

5
6 // Rekursion

7 for all s=3 to n:

8 for all S subset [n] with 1 in S and |S|=s:

9 for all x in S, x != 1:

10 P(S,x) = max{ P[S\{x}][x’] | x’ in (S union N(x)),x’ != 1 }

11
12 // Ausgabe

13 if exists x in N(1) with P[[n]][x]=1:

14 return G has Hamiltonian cycle

15 else:

16 return G does not have Hamiltonian cycle

Theorem: This algorithm is correct and requires storage O(n · 2n) and has runtime
O(n2 · 2n) with n = |V |.

Proof. Correctness shown above.
Storage comes from 2n−1 sets S and n− 1 elements at most for x.
Runtime:

󰁓n
s=3

󰁓
S⊆[n],1∈S,|S|=s

󰁓
x∈S,x ∕=1O(n) =

󰁓n
s=3

󰀃
n−1
s−1

󰀄
(s − 1)O(n) = O(n22n)

Version 2 We consider the same scenario but reduce the storage requirements further.
We choose s ∈ V arbitrarily and define for all S ⊆ [n], v ∕∈ S

WS := {path of length n in G with start/end vertex s, which does not visit any vertex from S}

WS can be efficiently computed. If AS is the adjacency matrix of G[V \S], then |WS |
is at position (s, s) in (AS)

n. Computing this matrix power requires O(n2.81 log n) with
Strassen’s algorithm to multiply matrixes. Because those matrix multiplications can be
done in-place, we only require O(n2) storage. Here we neglect that we can, in practice,
not use floating point storage of elements and thus have higher storage requirements. But
those requirements are still polynomial, so the advantage of this algorithm remains.
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W∅ contains all walks of length n with start and end vertex s. Each Hamiltonian cycle
is contained twice in that set (once for each direction). All unwanted walks are ∪n

i=1W{i},
being walks which do not contain all vertices. We get:

1

2
(|W∅|− |∪n

i=1Wi|)

=
1

2
(|W∅|+

n󰁛

l=1

(−1)l
󰁛

1≤i1<...<il≤n

|Wi1 ∩ ... ∩Wil |)

=
1

2
(|W∅|+

n󰁛

l=1

(−1)l
󰁛

1≤i1<...<il≤n

|Wi1,...,il |)

1 CountHamiltonianCylces(G=([n],E)):

2 s := 1 // random in V

3 Z := |W[empty ]|

4 for all S subset [n] with s not in S and S not empty:

5 compute |W[S]]| //with adjacency matrix of G[V\S]

6 Z := Z+(-1)^{|S|}*|W[S]|

7 Z := Z/2

8 return Z

Theorem: The above algorithm computes the number of Hamiltonian cycles in G =
(V,E) correctly, requires O(n2) storage, and has runtime O(n2.81 log n·2n) with n = |V |.

5.3 NP

Theorem Karp: The problem whether G = (V,E) contains a Hamiltonian cycle is NP
complete.

Generally, we divide problems into two categories:

• P (polynomial)

Those are efficiently decidable problems.

• NP (non-deterministic polynomial)

Those are (one-sided) efficiently verifiable problems.

We do not know whether P = NP or P ∕= NP . But most scientists believe the latter
is the case.

We say that some problem is NP complete if we could conclude that P = NP when
that problem is in P . NP -completeness is shown with implications: If said problem is P ,
then the solution can be mapped to other NP problems, which then also would have to
be in P .

5.4 Traveling Salesman Problem

The problem is, given some complete graph on n vertices with weights/distances between
any two vertices, to find the shortest Hamiltonian cycle.

H = min
Hamiltonian cycle

󰁛

e∈E(H)

l(e)

12



5.4.1 NP completeness

That this problem is NP-complete follows from that we know that finding some Hamilto-
nian cycle is NP complete and we can map this problem to the TSP problem. Specifically,
we consider l(e) ∈ {1, 2} for all e ∈

󰀃
[n]
2

󰀄
. The TSP problem then indirectly answers the

question whether there is a Hamiltonian cycle in the subgraph which has all the edges
with weight 1. This solves the Hamiltonian cycle problem if we assign edge weight 1 if
the edge exists is the graph we want to find a Hamiltonian cycle in. All other edges then
have weight 2.

Theorem: If for some α > 1, there exists an α-approximation algorithm of the TSP
with runtime O(f(n)), then also an algorithm exists, which decides in O(f(n)) whether
a graph on n vertices is Hamiltonian.

Proof. The proof for this follows from the above elaborated process. However we chose
edge weights from {0, 1} instead of form {1, 2} as α · 0 = 0 independent from α.

5.4.2 metric TSP

We now consider the metric TSP problem, which introduces additional conditions for
allowed weights:

• l(e) ≥ 0, ∀e ∈ E

• l(x, z) ≤ l(x, y) + l(y, z), ∀x, y, z ∈ [n].

We design an algorithm which finds a Hamiltonian cycle H such that cos(H) ≤ 2 ·
cost(OPT ), whereOPT is the cheapest Hamiltonian cycle. This is called a 2-approximation.

The algorithm works like this:

1. compute a MST T in G

2. create T ′ by doubling all edges in T

3. compute an Eulerian cycle E in T ′

4. reduce E to a Hamiltonian cycle by skipping vertices, which have already been
visited.

Step 2 creates a multigraph. Step 3 can be done by simply walking ’around’ the MST
as each edge may be visited twice. Formal reasoning for existence from even degrees. Step
4 can be done, because the edge for skipping exists in G (is complete). This alternative
path can only be shorter or have the same length (metric condition).

We get this analysis with cost(T ) ≤ cost(OPT − e) ≤ cost(OPT ):

cost(T ′) = 2 · cost(T ) ≤ 2 · cost(OPT )

cost(E) = cost(T ′) ≤ 2 · cost(OPT )

cost(H) ≤ cost(E) ≤ 2 · cost(OPT )

Theorem: For the metric TSP problem, a 2-approximation algorithm with runtime
O(|V |2) exists.

13



5.4.3 general TSP approximation

One believes that a 2-approximation is also possible. However, so far only a 4-approximation
has been achieved.

6 Matchings (”Matchings”)

Definition matching (”Matching”): A set of edges M ⊆ E is called matching
(”Matching”) in G = (V,E) if not vertex is incident to more than one edge. Formally:
e ∩ f = ∅, ∀e, f ∈ M, e ∕= f .

Definition maximal/maximum matchings (”inklusionsmaximale/kardi-
nalitätsmaximale Matchings”):

• A matching M is maximal (”inklusionsmaximal”/”nicht erweiterbar”) if no match-
ing M ′ with M ⊆ M ′ and |M ′| > |M | exists. I.e., if M ∪ {e} is not a matching for
all e ∈ E\M .

• A matching M is maximum (”(kardinalitäts-)maximal”/”größtmöglich”) if no
matching M ′ with |M ′| > |M | exists.

Theorem: If Minc is maximal and Mmax is maximum, then |Minc| ≥ |Mmax|
2

Proof. Every edges from Mmax must have at least on vertex in Minc as the edge could
otherwise be added to Minc, which would then not be maximal.

|Mmax| ≤ |endpoints in Minc| = 2 · |Minc|

DefinitionM -augmenting path (”M -augmentierender Pfad”): AnM -augmenting path
is a path which edges alternate between being in M and not being in M and which starts
and ends in vertices not matched in M .

Assuming we know some M -augmenting path in M , we can increase the matching by
switching edge membership in the matching along the augmenting path.

Theorem Berge: If M is a matching in G = (V,E), which is not maximum, then an
M -augmented path exists.

Proof. Let M1 and M2 be two arbitrary matchings in some graph G. We know that every
vertex in GM = (V,M1 ⊕ M2) (⊕ being XOR) has degree at most 2. The connected
components of G are hence paths and cycle paths (the latter must have an even length,
as edges from M1 and M2 are alternating).

We now assume |M1| < |M2| and consider the connected components of M1∪M2. The
connected components are paths or cycle paths. This also considers edges from M1 ∩M2.
Those are paths of length 1, which correspond to one element in M1 and one in M2.
Each such path or path from M1 ⊕M2 with even length or cycle path comprises as many
edges from M1 as from M2. Because of |M1| < |M2|, a path must exist in M1 ∪ M2,
which contains more edges from M2 than from M1. If |M2| = |M1| + k, even at least k

14



such paths must exist. With such an M1-augmented path, we can get a larger matching
M ′

1 := M1 ⊕ P (P to be understood as a set of edges).
This shows that as long as some matching M is not maximum, i.e. a larger matching

M2 exists, an M -augmented path exists and can be used to get a larger matching.

6.1 Maximal Matchings - Greedy Algorithm

1 GreedyMatching(G):

2 M is empty

3 WHILE E not empty:

4 chose an arbitrary edge e in E

5 M = M union {e}

6 remove e and all incident edges from G

This provides a maximal matching by definition and runs in O(|E|).

6.2 Maximum Matchings

We find maximummatchings by finding augmenting paths. When we start with a matching
comprising one arbitrary edge, we have to find at most |V |

2 − 1 matchings consecutively
to get a maximum matching. We will now deal with finding those augmenting paths in
different kind of graphs.

6.2.1 Bipartite graphs

This algorithm finds one augmenting path in a bipartite graph using modified BFS.

1 Augmenting_Path(G=(A⊎B,E),M):
2 L0 := { vertices in A not covered }

3 mark all vertices from L0 as visited

4 IF L0 = ∅:

5 RETURN M is maximal

6 FOR i = 1..n:

7 IF i is odd:

8 Li := { neighbors of Li−1 via edges in E\M, which are not

covered }

9 ELSE:

10 Li := { neighbors of Li−1 via edges in M, which are not covered

}

11 mark all vertices from Li as visited

12 IF Li contains vertices v which are not covered:

13 find path P from L0 to v by backtracking

14 return P

15 return M is already maximal

This modified BFS runs in O(|V |+ |E|). Often we only consider O(|E|) as the problem
can be reduced to only connected graphs. And we we must do this O(|V |) times as states
before, we get O(|E| · |V |).

An algorithm called Hopcroft-Karp algorithm exists, which reduces the runtime even
further to O(

󰁳
|V ||E|). This was not discussed besides mentioning of the runtime.

Furthermore, state-of-the-art algorithms reach runtimes of Õ(|E|), where the ∼ indi-
cates almost-linear runtime.
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6.2.2 General graphs

This case is very complex and we do not deal with it in detail. The complexity comes from
the possibility of circle sof uneven length in the graph. The algorithm which extends the
above idea to work with this condition is called Blossom algorithm and can find augmented
paths in O(|V | · |E|), leading to a total runtime of O(|V |2 · |E|).

State-of-the-art algorithms reach:

• O(|V | 12 · |E|) - Micali, Vazirani

• O(|V |2.373) - with amtrix multiplication, Mucha, Snakowski

6.2.3 weighted graphs

Theorem Gabow: If n is even and l :
󰀃
[n]
2

󰀄
→ N0 a weight function of the complete

graph Kn, a perfect matching can be found in O(n3).

Proof. The proof of this statement is beyond the scope of this course.

Theorem Christofiedes: A 3
2 -approximation for the metric TSP problem exists with

runtime O(|V |3).

Proof. The approach is similar to the 2-approximation algorithm. The noticable difference
is how the MST is modified so that an Eulerian cycle can be found.

Now, let S be the set of edges with an uneven degree in the MST T . Because |S| is
even, there is a perfect matching in Kn[S]. Such a minimal perfect matching can be found
in O(n3) according to Theorem 1.50. In T ∪M we can then find an Eulerian cycle with
l(C) ≤ l(M) + l(T ).

We already know that l(T ) = mst(Kn, l) ≤ opt(Kn, l). We show that l(M) ≤
1
2opt(Kn, l). Consider a Hamiltonian cycle Copt. The vertices of S separate Copt into
|S| paths. Those paths can be reduced to vertices without making the cycle path longer
as the triangle inequality holds. We now have a cycle path with its vertices being S and
l(CS) ≤ l(Copt) = opt(Kn, l). This cycle path can be written as the union of two matchings
of which at least one must have length ≤ 1

2 l(Cs).

6.3 (Perfect) Matchings in bipartite graphs

Finding matchings in bipartite graphs is of high interest in many applications. Notice that
we could add a super source S and super end vertex T to some bipartite graph and then
consider Menger’s theorem. The size of the matching would correspond to the connectivity
between S and T , i.e., the number of intern-vertex-disjunct paths from S to T .

Theorem Hall’s Marriage Theorem (”Heiratssatz”/”Hall”): A bipartite graph G =
(A⊎B,E) contains a matching M of cardinality |M | = |A| ⇔ ∀X ⊆ A : |X| ≤ |N(X)|.

Proof.
First, we consider ⇒: Let M be the matching with |M | = |A|. In the subgraph

H = (A ⊎ B,M), every subset X ⊆ A has exactly |X| neighbors by definition (of the
matching). Because M ⊆ E, we have |N(X)| ≥ |X| for all X ⊆ A.

Second, we consider ⇐: We use induction over a = |A|.
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• Base Case (a = 1): As we only have one vertex with at least one neighbor, this
follows easily.

• Hypothesis: The statement holds for all |A| < a.

• Step:

– Case 1: ∀X ⊊ A,X ∕= ∅, |X| < |N(X)|
We chose an arbitrary edge e = {x, y}, add e to the matching, and consider
G′ = G[V \{x, y}] (and all incident edges to x, y). Because we had < and
only one vertex is removed from B, we can use the hypothesis to show that a
matching exists for the remaining vertices from A, being A\{x}.

– Case 2: ∃X0 ⊊ A,X0 ∕= ∅, |X0| = |N(X0)|
We consider the vertex-disjunct graphsG′ = G[X0⊎N(X0)] andG′′ = G[A\X0⊎
B\N(X0)]. For G

′ the hypothesis shows our statement. It also holds for G′′ as
we will show now: We have some arbitrary X ⊆ A\X0 and know

|X|+ |X0| = |X ∪X0|
from assumption

≤ |N(X ∪X0)|
= |N(X0)|+ |N(X)\N(X0)| = |N(X0)|+ |N(X) ∩ (B\N(X0))|

⇒ |X0| ≤ |N(X) ∩ (B\N(X0))|, as |X| = |N(X)|

We use the term k-regular. It means that all degrees in the given graph are k.

Theorem: LetG = (A⊎B,E) be a k-regular bipartite graph. Then, there areM1, ...,Mk

so that E = M1 ⊎ ... ⊎Mk and all Mi, 1 ≤ i ≤ k, are perfect matchings in G.

Proof. It follows directly from 1.52 that k-regular bipartite graphs (all degrees are k) do
always contain a perfect matching. Some vertices from A must connect to at least the
same amount of vertices in B, because of their degrees. And the matching is perfect,
because |A| = |B| as the matching is perfect.

If we remove that matching from the graph, we get a k − 1-regular graph. Again,
this must have a perfect matching my the above reasoning. Hence, we can find k perfect
matchings.

Now, we consider how to fund such perfect matchings in the case that k is a power of
2.

Theorem Gabow: If G = (V,E) is 2k-regular, a perfect matching can be found in
O(|E|).

Proof. As G is 2k-regular, each connected component satisfies the Euler condition and we
can find an Eulerian Cycle in each component in O(|E|). Then, we remove every second
edge from those Eulerian Cycle, which results in a 2k−1-regular graph. This procedure
can be repeated until we have some 20-regular graph, which is a perfect matching then.

Runtime: We can find in O(|E|) an Eulerian cycle in each connected component. We
have k iterations:

k󰁛

i=1

O(|E|)/2i−1 ≤
󰁛

i≥0

O(|E|)/2i = 2O(|E|) ≤ O(|E|)
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This is the generalized form, which we do not prove or elaborate on.

Theorem: In k-regular bipartite graphs, a perfect matching can be found in O(|V |).

7 coloring

This tries to solve problems in which we have to find sets of vertices, which have no internal
edges.

Definition vertex coloring (”(Knoten-)Färbung”):
A (vertex) coloring of some graph G = (V,E) with k colors is a map c : V → [k] so that
c(u) ∕= c(v) for all edges {u, v} ∈ E.

Definition chromatic number (”chromatische Zahl”):
The chromatic number (”chromatische Zahl”) X(G) is the minimal number of colors
required for a vertex coloring of G.

Graphs with the chromatic number g are called k-partite with k ≥ g. So an equivalent
phrasing of the definitions is X(G) ≤ k ⇔ G is k-partite, i.e., there are k edges within
which there are no edges. Such sets are called independent sets (”stabile Mengen”).

Theorem: Some graph G = (V,E) is bipartite if and only if it contains no cycle with
odd length as a subgraph.

Proof.
First, ⇒: Cycle paths of uneven length have the chromatic number three. Hence, they

can not be contained in a bipartite graph.
Second, ⇐: Without loss of generality we can assume that G is connected. We then

start BFS at some arbitrary vertex s and color it with 1 if its distance d[v] to s is even or
with 2 if it is odd. As there is no cycle path of uneven length, no vertex can be assigned
two different colors.

Theorem Four Color Theorem (”Vier-Farbe Theorem”): Every land map can be
colored with four colors.

Proof. This is very complex. It consists of a theoretical part, which reduces the problem
to a finite number of finite cases. In a second part, those cases are then checked my a
computer program.

Mathematicians sometimes mock this to not be a ’real’ proof as it depends on program
correctness etc.

The question rises, one one can show whether G is k-partite. We can use DFS/BFS
to easily show whether G is bipartite in O(|E|) as already stated in an above theorem.
However:

Theorem: For all k ≥ 3, the problem whether for some graph G = (V,E) X(G) ≤ k is
NP complete.

Proof. Given without proof.

Alternatively, there are some general ideas on how to approach such a problem:
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• exponential algorithm

Yes, such an algorithm using the inclusion/exclusion principle exists and has runtime
O(2.2n).

• approximation

No, for each 󰂃 > 0 finding an n1−󰂃 approximation has NP difficulty.

• special cases

Yes, special cases exist. We will consider some of them.

Theorem: ∀k ∈ N, ∀r ∈ N: Graphs without cycles of length ≤ k exist that do have
chromatic number ≥ r.

This is to give some intuition why finding ’global’ colorings is difficult.

Proof. ...

7.1 Greedy algorithm

1 Greedy -Coloring(G):

2 choose an arbitrary order of the vertices: V={v1 ,...,vn}
3 c[v1] = 1

4 FOR i=2..n:

5 c[vi] = min{ k ∈ N|k ∕= c(u) for all u ∈ N(vi)∩{v1 ,...,vi−1} }

Theorem: Let G be some connected graph. For the number of colors C(G) required by
the greedy algorithm the following holds: X(G) ≤ C(G) ≤ ∆(G) + 1 (∆(G) being the
maximum degree in G).
If the graph is stored as an adjacency list, the coloring is found in O(|E|)

Proof. Quite trivial.

It is interesting to observe that some order V for the greedy algorithm always exists
so that it only requires X(G) colors. Specifically, coloring one partition at a time. But
that such a best order is not always chosen can be seen when considering that bipartite
graphs exist so that the greedy algorithm requires |V |

2 colors (despite being 2-colorable).
If the order has the property |N(vi) ∩ {v1, ..., vi−1}| ≤ k, ∀2 ≤ i ≤ n, then the greedy

algorithm requires at most k+ 1 colors. From that follows the heuristics for a good order
that vn is the vertex with the smallest degree, vn−1 with the 2nd smallest degree, ...

This is a formal treatment of that heuristic:

Theorem: Let G = (V,E) be some graph and k ∈ N so that each induced subgraph
of G contains a degree of at most k. Then, X(G) ≤ k + 1 and a k + 1-coloring can be
found in O(|E|).

Proof. We create an order of the vertices of G v1, ..., vn like this:

• We choose some vertex in G with degree at most k, which we name vn, and remove
it from the graph.

• Again, we choose some vertex in G′ with degree at most k, which we name vn−1,
and remove it from the graph.

19



• Repeat...

So, for all 2 ≤ i ≤ n: vi has the maximum degree k in the induced subgraph {v1, ..., vi}.
If we color G in that order, we hence know that vi has at most k already colored neighbors.
Hence, we can color it with k+1 colors. This holds for all vertices and we hence can color
G with k + 1 colors.

Actually coloring the graph once a proper order is known can be clearly done in O(|E|)
(or rather O(|E|+ |V |)). Hence, we consider the runtime of finding the order.

• Consider the array d[], which stores for each vertex (and time 1 ≤ i ≤ n) the
degree of vertex v in G[V \{vi+1,...,vn}]. We consider n, n − 1, ... In the beginning,
d[v] := deg(v). For each newly found vertex, we can update the array in O(deg(vi)).
For all vertices, this is O(|E|). Now, we still have to find some vertex with degree
at most k in the subgraph G[V \{vi+1,...,vn}].

• We maintain the boolean array removed[] to member, which vertices have already
been removed, being initialized with false. Still, finding some vertex with d[v] ≤
k and removed[v] = false would still take O(|V |), leading to a total runtime of
O(|V |2).

• To optimize, we use the set Q which contains all not removed vertices with degree
at most k. We add element to Q after initialization and whenever vertices are
removed/d[] is updated. We also set removed to true when adding some vertex to
Q to not add it a 2nd time later. Hence, one step can then be done in O(1).

The total runtime then is O(|V | · 1 + (|V | + |E|)), which can be approximated with
O(|E|).

Corollary: If G = (V,E) is connected and ∃v ∈ V with deg(v) < ∆(G), then we can
efficiently find an order so that the greedy algorithm requires at most ∆(G) colors.

A special case, in which coloring becomes easier is if we can create some block graph.
If G is a graph and we can color each block with k colors respective, also the entire graph
can be colored with k colors. The approach for one cut vertex is to color both blocks (each
including the cut vertex) respectively. Then there are two cases:

• The cut vertex has the same color.

• The cut vertex has different colors: switch the naming of the colors in one block so
that the color matches.

Notice that in trees each edge is a block by itself by definition. Hence, it follows that
trees can always be colored with two colors/are bipartit.

Theorem: In a planar graph, a vertex with degree ≤ 5 always exists.

This was given without proof. It follows directly that we can efficiently find a coloring
with ≤ 6 colors for planar graphs.

7.2 Brook’s Theorem

Above we learned how to find colorings with at most ∆(G) + 1 colors. Here, we will show
how to find colorings with at most ∆(G) colors.
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Theorem Brook: Let G = (V,E) be a connected graph, which is neither complete
(G = Kn) nor a cycle of uneven length (G ∕= C2n+1). Then X(G) ≤ ∆(G) and there
exists an algorithm, which colors the vertices of G with ∆(G) in O(|E|).

Proof. If G has a vertex with degree less than ∆(G) we can use the already known Greedy
algorithm to achieve this. Similarly, we can consider the special case of blocks when there
is a cut vertex. Hence, we assume that all vertices have degree ∆(G) and that there is no
cut vertex.

Because G is connected but not complete, ∃v with v1, v2 ∈ N(v) and v1 ∕= v2 and
{v1, v2} ∕∈ E.

• Case 1: G\{v1, v2} is connected.

Then we do dfs/bfs in G[V \{v1, v2}] from v. We order the vertices like this: First v1
and v2, then the elements from dfs / bfs in reverse order so that v is the last vertex.
The greedy algorithm then clearly works with ∆(G) colors at most.

• Case 2: G\{v1, v2} is not connected.

Let V1, ..., Vs be the connected components of G[V \{v1, v2}] with s ≥ 2. Gi :=
G[Vi ∪ {v1, v2}], 1 ≤ i ≤ s.

– Case 2.1: If in all Gi, v1 or v2 has at most degree ∆(G)− 2

Then, we can add the edge {v1, v2} and color the graph with ∆(G) colors with
v1 and v2 having different colors. The remaining part is analogous to the block
graph approach.

– Case 2.2

The degrees of v1 and v2 across all Gi can sum up to at most ∆(G) respectively.
Hence, in all but one Gi, the degree can be at most 1. If the degree would be
0 in some Gi, then the other vertex would be a cut vertex, which has been
already excluded as a special case above. Hence, we must have s = 2 and v1
and v2 have exactly one respective neighbor u1 and u2 in G2. We then color
G1 and G2 with ∆(G) colors respectively.

∗ If ∆(G) > 2:
It might require some color changing so that u1 and u2 do have different
colors than v1 and v2.
Together, then the colorings of G1 and G2 are a ∆(G) coloring of G.

∗ If ∆(G) = 2:
Then, G must be a circle. And because we excluded odd circle length, G
must have even length and can be colored with two colors.

7.3 3-colorable graphs

Theorem: A 3-colorable graph can be colored in O(|V |+ |E|) with O(
󰁳

|V |) colors.
Important: The knowledge of the graph being 3-colorable is necessary in-advance!

Proof. We then chose some vertex v and can color N(v) with two colors (none can have
color of v and three colors at most). If we choose multiple v, we can color their respective
neighborhood with three new colors every time.

The algorithm now consists of two partsts. First:

21



1 while exists uncolored v with ’large ’ degree (>= x): // x specified

later

2 color v and uncolored elements of N(v) with three new colors

The while loop can execute |V |
x+1 times at most, because each iteration colors colors

x+ 1 vertices.
After all while iterations are complete, we have a graph with maximum degree ≤ x−1.

The greedy algorithm can color that graph with x colors efficiently.
For an upper bound of the number of colors we get: 3 |V |

x+1 +x ≤ O(4
󰁳

|V |) ≤ O(
󰁳

|V |)
(we choose x =

󰁳
|V | here).

The runtime is quite obvious.

The state-of-the-art algorithm requires O(|V |0.211), which is only about two roote
better. We do not cover this algorithm due to its high complexity.

7.4 additional stuff

Theorem: For all k ≥ 2, some graph Gk without triangles with X(Gk) ≥ k exists.

Proof. We prove this by induction over k.

• Base Case (k = 2)

trivial, such as cycle with odd length ≥ 5.

• Hypothesis

Let k ≥ 2 and Gk be some graph without triangles with x(Gk) ≥ k.

• Step

We add some vertices and edges to Gk. Let v1, v2, ..., vn be the vertices of Gk. For
each vi we add wi to G and connect it to all neighbors of vi. Finally, we add vertex z
and connect it to all w1, ..., wn. Notice that the new graph does not contain triangles.

– Because wi are not connected among themselves, z is not in any triangle.

– Because wi is incident to the neighbors of vi, it can not be in any triangle as
Gk has not triangles by assumption.

Hence, Gk+1 has no triangles.

Assume Gk+1 would be colorable with k colors. At least one of the k colors could not
be amont w1, ..., wn, because of z. As all pairs vi and wi have the same neighbors,
they can share the same color. Hence, Gk would have to be colorable with k − 1
colors, which contradicts our assumption.
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Part II

Probability & Randomized Algorithms

8 Fundamentals

Definition probability space: A discrete probability space (”Wahrscheinlichkeit-
sraum”) is defined by its sample space (”Ereignismenge”) Ω = {ω1,ω2, ...} of ele-
ments (”Elementarereignisse”). Each element is assigned some elementary probability
(”(Elementar-)Wahrscheinlichkeit”) Pr[ωi] with 0 ≤ Pr[ωi] ≤ 1 and

󰁛

ω∈Ω
Pr[ω] = 1

Some set E ⊆ Ω is called outcome (”Ereignis”). The probability of an outcome is defined
by:

Pr[E] :=
󰁛

ω∈E
Pr[ω]

If E is an outcome, E := Ω\E is called the complementary outcome of E (”Gegenereig-
nis”).

We limit ourselves to finite/countably infinite probability spaces, whose study is often
denoted as (elementary) stochastic (”(elementare) Stochastik”).

Lemma: For outcomes A and B we have:

• Pr[∅] = 0 and Pr[Ω] = 1

• 0 ≤ Pr[A] ≤ 1

• Pr[A] = 1− Pr[A]

• If A ⊆ B, then Pr[A] ≤ Pr[B]

Theorem (”Additionssatz”): If outcomes A1, ..., An are pairwise disjunct:

Pr[∪n
i=1Ai] =

n󰁛

i=1

Pr[Ai]

For an infinite set of pairwise disjunct outcomes: Pr[∪i≥1Ai] =
󰁓

i≥1 Pr[Ai]
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Theorem principle of inclusion/exclusion (”Inklusions-/Exklusionsprinzip”): For out-
comes A1, ..., An (n ≥ 2):

Pr

󰀥
n󰁞

i=1

Ai

󰀦
=

n󰁛

l=1

(−1)l+1
󰁛

1≤i1≤...≤il≤n

Pr [Ai1 ∩ ... ∩Ail ]

=

n󰁛

i=1

Pr[Ai]−
󰁛

1≤i1<i2≤n

Pr[Ai1 ∩Ai2 ] +−...

+(−1)l+1
󰁛

1≤i1<...<il≤n

Pr[Ai1 ∩ ... ∩Ail ] +−...

+(−1)n+1 · Pr[A1 ∩ ... ∩An]

This theorem has already been stated before in regard to cardinality instead of prob-
ability. However that does not make any difference. The proof will be considered later.

Computing this for large n is very tedious. Hence, this approximation:

Theorem Boole’s Inequality: for outcomes A1, ..., An, we have

Pr

󰀥
n󰁞

i=1

Ai

󰀦
≤

n󰁛

i=1

Pr[Ai]

Analogously for countably infinite Ai.

Proof. We consider the finite case from which the infinite case can be derived.
For i ≥ 1: Bi := Ai\(A1 ∪ ...∪Ai−1). Obviously Pr[Bi] ≤ Pr[Ai]. And if i ∕= j, Bi and

Bj are disjunct. Still, ∪n
i=1Ai = ∪n

i=1Bi.
We use the ”Additionssatz”:

Pr[∪n
i=1Ai] = Pr[∪n

i=1Bi] =

n󰁛

i=1

Pr[Bi] ≤
n󰁛

i=1

Pr[Ai]

Definition La-Place Space: A La-Place space is a finite probability space in which all
(elementary) events have the same probability 1

|Ω| . From that follows that Pr[E] = |E|
|Q| .

For La-Place spaces we say that the result of the (probability) experiment (”Zufallsex-
periment”) is uniformly distributed (”uniform verteilt”/”gleichverteilt”). This probability
space corresponds to the space with maximum entropy and, hence, is a good starting point
when having no information on a system one tries to model.

9 Conditional Probability

We provide a generally helpful table here, which provides formulas to compute the number
of variations in which one can choose k elements from some set with n elements.

k corresponds to the continuously decreasing sequence starting at k. By definition󰀃
n
k

󰀄
= n!

k!(n−k)! . The two formulas for the ordered cases are quite obvious. For the unordered
cases consider this:
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• without putting back

There are two intuitive understandings for this. First, see that nk

k! divides the number
of ordered choices by the number of orders, i.e., how often there is a duplicate of
each case when not considering the order. This corresponds to

󰀃
n
k

󰀄
= n!

k!(n−k)! .

The second option is to explain the meaning of the factors of n!
k!(n−k)! directly. n!

considers all orders of our n elements. We say, from each order we choose the first
k elements. Then we divide by k! because we do not care about the order of the
elements we choose. And we divide by (n − k)! because we do not care about the
order of the elements we do not choose.

• putting back

There is some intuition for this too. We construct this scenario: Write n+k-1 fields
next to each other. Then, write n− 1 strokes in arbitrary of those fields. Now give
the n numbers an order and fill empty fields between the i-th and i+1-th stroke with
the i + 1-th number. This results in all possible combinations. Instead of putting
strokes, we can also choose the empty k fields, which corresponds to computing󰀃
n+k−1

k

󰀄
for the number of combinations.

ordered unordered

putting back nk
󰀃
n+k−1

k

󰀄

without putting back nk
󰀃
n
k

󰀄

Figure 2

We now consider conditional probability. Pr[A|B] denotes the probability that A holds
under the assumption that B holds.

Definition conditional probability: A,B are outcomes with Pr[B] > 0. The conditional
probability Pr[A|B] (the probability of A given B) is defined as:

Pr[A|B] :=
Pr[A ∩B]

Pr[B]

The conditional probabilities Pr[·|B] for some 0 < B ⊆ Ω is a probability space itself.

Theorem Law of total probability: A1, ..., An are pairwise disjunct outcomes and
B ⊆ A1 ∪ ... ∪An.

Pr[B] =

n󰁛

i=1

Pr[B|Ai] · Pr[Ai]

Analogously for the countably finite case.

Proof. Notice: B = (B ∩A1)∪ ...∪ (B ∩An). For i ∕= j: As Ai ∩Aj ∕= ∅, also B ∩Ai and
B ∩Aj are disjunct. Hence, we can use the addition theorem to write:

Pr[B] = Pr[B ∩A1] + ...+ Pr[B ∩An]

Then, we use the definition of conditional probability (Pr[B∩Ai] = Pr[B|Ai] ·Pr[Ai])

= Pr[B|A1] · Pr[A1] + ...+ Pr[B|An] · Pr[An]
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The countably infinite case holds, because the addition theorem and conditional prob-
ability also hold for the countably infinite case.

Theorem multiplication rule (”Multiplikationssatz”): A1, ..., An are arbitrary out-
comes with Pr[A1 ∩ ... ∩An] > 0.

Pr[A1 ∩ ... ∩An] =

Pr[A1] · Pr[A2|A1] · Pr[A3|A1 ∩A2] · · · Pr[An|A1 ∩ · · · ∩An−1]

Proof. First, all probabilities are well defined: r[A1] ≥ Pr[A1 ∩ A2] ≥ ... ≥ Pr[A1 ∩ ... ∩
An] > 0.

Second, the following (just having applied the formula to the above claim) easily sim-
plifies to the desired form:

Pr[A1]

1
· Pr[A1 ∩A2]

Pr[A1]
· ... · Pr[A1 ∩ ... ∩An]

Pr[A1 ∩ ... ∩An−1]

Theorem Bayes’ theorem (”Satz von Bayes”): A1, ..., An are pairwise disjunct out-
comes. B ⊆ A1 ∪ ... ∪An is an outcome with Pr[B] > 0. For any i = 1, ..., n:

Pr[Ai|B] =
Pr[Ai ∩B]

Pr[B]
=

Pr[B|Ai] · Pr[Ai]󰁓n
j=1 Pr[B|Aj ] · Pr[Aj ]

The case for the countably finite case is analogously.

Proof. This follows directly from the definition of conditional probability and the law of
total probability.

9.1 Common Problems

Monty-Hall-Problem The Monty-Hall-Problem is a logic/stochastic problem, which
demonstrates counterintuition towards those basic laws of probability.

Medicine testing Statistical analysis can result in

• Pr[”test positive”|”patient is sick”]

• Pr[”test positive”|”patient is not sick”]

But wer are interested in Pr[”patient is sick”|”test is positive”]. This can be computed
with Bayes’ Theorem.

Birthday problem The birthday problem is a classic probability puzzle that asks,
”What is the probability that, in a group of n randomly chosen people, at least two of
them share the same birthday?” The answer may be surprising to many people: even in
a group as small as 23 individuals, the probability of a shared birthday is greater than 50
%. This is because there are 365 possible birthdays, and as the number of people in the
group increases, the number of possible pairings that could result in a shared birthday
increases exponentially.
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We can rephrase the problem to throwingm balls into n bins (n = 365 when considering
birthdays and m the number of people). To simplify the computation, we consider the
complementary event. We consider: Ai := ”the i-th ball lands in a so far unoccupied bin”.

For the conditional probability assuming that all so far landed in their own bin:
Pr[Ai|A1 ∩ ... ∩Ai−1] =

n−(i−1)
n .

So that all m balls/people land in/on different bins/dates, we have Pr[A1∩ ...∩Am] =

1· n−1
n ·...· n−(m−1)

n by using the multiplication rule. For the initially interesting probability,
we then have 1− Pr[A1 ∩ ... ∩Am].

Hashing The Birthday Problem is a toy problem. However, its concept of distributing
m data sets among n storage locations is more common.

This introduces hashing as real-world application: Hashing. We have a universe K ⊆
N0 and K = [p], because we model the numbers as bits on computers without loss of
generality. p must be a prime here and we then define

ha,b := K → [n]

with
k 󰀁→ ((ak + b) mod p) mod n

From the fact that p is prime, it follows that for each k′ ∈ K, there is a unique k ∈ K
so that k′ = (ak + b) mod p.

For all pairs a, b ∈ K with a ∕= 0, the function has the characteristic that |h−1
a,b| ≤ ⌈p/n⌉.

In other words, the function ha,b distributes the elements of K uniformly to the memory
[n].

10 Independence

Colloquially, independence means that knowledge about one outcome does not imply
knowledge about some other outcome. We define independence, but intuition comes from
Pr[A|B] = Pr[A] ⇔ Pr[A∩B]

Pr[B] = Pr[A].

Definition independence: Outcomes A,B are independent if Pr[A∩B] = Pr[A]·Pr[B].

It is important to realize that physical and stochastic independence are not the same.
Two things can be physically linked but we still consider them independent in regards to
their probability. For instance, we may throw a coin and consider whether the result is
even/odd and ≤ 3/≥ 4.

Definition independence: A1, ..., An are independent if ∀I ⊆ {1, ..., n}:

Pr[Ai1 ∩ ... ∩Aik ] = Pr[Ai1 ] · · · Pr[Aik ]

A countably infinite set is said to be independent if the above holds for all I ⊆ N.

Lemma: The outcomes A1, ..., An are independent if and only if for all (s1, ..., sn) ∈
{0, 1}n:

Pr[As1
1 ∩ ... ∩Asn

n ] = Pr[As−1
1 ] · · · Pr[Asn

n ]

we have A0
i = Ai and A1

i = Ai.
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Proof.
First, we show that the definition implies this lemma.
We do induction over the count of zeros in s1, ..., sn. Base Case: If s1 = ... = sn = 1,

then we must show nothing.
Step: From Theorem 2.3 (addition theorem), we get

Pr[A1 ∩As2
2 ∩ ... ∩Asn

n ] = Pr[As2
2 ∩ ... ∩Asn

n ]− Pr[A1 ∩As2
2 ∩ ... ∩Asn

n ]

When using the induction hypothesis, we get

Pr[A1 ∩As2
2 ∩ ... ∩Asn

n ] = Pr[As2
2 ]...Pr[Asn

n ]− Pr[A1] Pr[A
s2
2 ]...Pr[Asn

n ] = (1− Pr[A1]) Pr[A
s2
2 ]...Pr[Asn

n ]

From this, the claim follows.

Second, we give the idea of how this lemma implies the definition in one special case.
The general case follows but is more complicated to write down.

Pr[A1 ∩A2] =
󰁛

s3,...,sn∈{0,1}
Pr[A1 ∩A2 ∩As3

3 ∩ ... ∩Asn
n ]

=
󰁛

s3,...,sn∈{0,1}
Pr[A1] Pr[A2] Pr[A

s3
3 ]...Pr[Asn

n ]

= Pr[A1] Pr[A2]
󰁛

s3∈{0,1}
Pr[A3]

s3 ...
󰁛

sn∈{0,1}
Pr[Asn

n ]

= Pr[A1] Pr[A2]

Lemma: A,B,C are independent outcomes. Then, A ∩B and C as well as A ∪B and
C are independent.

Proof. For ∩:

Pr[(A ∩B) ∩ C] = Pr[A] Pr[B] Pr[C] = Pr[A ∩B] Pr[C]

For ∪, we use the inclusion/exclusion principle:

Pr[(A ∪B) ∩ C]

= Pr[(A ∩ C) ∪ (B ∩ C)]

= Pr[A ∩ C] + Pr[B ∩ C]− Pr[A ∩B ∩ C]

= Pr[C](Pr[A] + Pr[B]− Pr[A ∩B])

= Pr[C] Pr[A ∪B]
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10.1 pseudorandom number generators (”Pseudozufallsgeneratoren”)

When working with deterministic computers, we can not get true randomness. However,
we require it for randomized algorithms to work. So we use PRNGs:

f : {0, 1}m → {0, 1}m × {0, 1}n

si−1 → (si, ai)

si are internal states and ai are ’random’ numbers. m is the state length. Starting
with the initial ’seed’ s0 ∈ {0, 1}m, we continuously can generate numbers.

This becomes useful, if ai are independent (and uniformly distributed) according to
our above definition of independent. Then, the generated numbers appear to be random
to the user/program.

To this date it is unknown whether a function such that different ai are actually
independent exists. But we have sufficient functions for current applications.

11 Random Variables

Definition random variable (”Zufallsvariable”): A random variable (”Zufallsvariable”)
is a function X : Ω → R.

For some discrete probability space, the image of a random variable WX (with random
variable X) is always finite or countable.

A convention for writing outcomes is to write X ≤ 5 instead of {ω ∈ Ω|X(ω) ≤ 5}.
This kind of notation is generally accepted/correct here, but not in the sense of ’pure’
mathematics.

One useful application is to define an indicator variable for some event.

Definition: A ⊆ Ω is some outcome. The indicator variable XA is defined with
XA(ω) := 1 ⇔ ω ∈ A and XA(ω) := 0 ⇔ ω ∕∈ A
For the expected value of XA: E [XA] = Pr[A].

Definition density function (”Dichtefunktion”): For some random variable X:

fX : R → [0, 1]

x 󰀁→ Pr[X = x]

Definition distribution function (”Verteilungsfunktion”): random variable X:

FX : R → [0, 1]

x 󰀁→ Pr[X ≤ x]

The density/distribution function uniquely describe a random variable.

11.1 Expected Value

Definition expected value (”Erwartungswert”): For a random variable we define the
expected value E[X] with

E[X] :=
󰁛

x∈WX

x · Pr[X = x]
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With infinite Xx this is an infinite sum, which might converge. Then, the expected
value is not defined. We only consider probability distributions for which the expected
value is properly defined.

Lemma: X is a random variable.

E [(]X) =
󰁛

ω∈Ω
X(ω) · Pr[ω]

Proof. This follows by using the definition of Pr[X = x]. Consider:

E [(]X) =
󰁛

i∈WX

i · Pr[X = i]

=
󰁛

ω∈Ω,i∈WX

i · Pr[X = i ∩ ω] (law of total probability)

= E [(]X) =
󰁛

ω∈Ω
X(ω) · Pr[ω]

Theorem: X is a random variable with WX ⊆ N0.

E [X] =

∞󰁛

i=1

Pr[X ≥ i]

Proof.

∞󰁛

i=1

Pr[X ≥ i] =

∞󰁛

i=1

∞󰁛

j=i

Pr[X = j] =

∞󰁛

j=1

j󰁛

i=1

Pr[X = j]

=

∞󰁛

j=1

j · Pr[X = j] =

∞󰁛

j=0

j · Pr[X = j] = E[X].

11.1.1 Conditional Random Variables

This is how we treat conditional probabiliy/conditional random variables:

Pr[(X|A) ≤ x] := Pr[X ≤ x|A] = Pr[{ω ∈ A|X(ω) ≤ x}]
Pr[A]

,Pr[A] > 0

The conditional random variable X|A is just as X but with the domain limited to A.
We write X|A : A → R. From that we derive this from the above definitions:

• fX|A : R → [0, 1], x 󰀁→ Pr[X = x|A]

• FX|A : R → [0, 1], x 󰀁→ Pr[X ≤ x|A]

• E[X|A] :=
󰁓

x∈WX
xPr[X = x|A] = 1

Pr[A]

󰁓
ω∈AX(ω) Pr[ω]
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Theorem: X some random variable. A1, ..., An are pairwise disjunct with A1∪...∪An =
Ω and Pr[A1], ...,Pr[An] > 0.

E [X] =

n󰁛

i=1

E [X|Ai] · Pr[Ai]

The infinite case is analogously.

Proof.

E[X] =
󰁛

x∈WX

x · Pr[X = x]

=
󰁛

x∈WX

x ·
n󰁛

i=1

Pr[X = x|Ai] Pr[Ai]

=

n󰁛

i=1

Pr[Ai] ·
󰁛

x∈WX

x · Pr[X = x|Ai]

=

n󰁛

i=1

Pr[Ai] · E[X|Ai]

X is independent of A if fX|A = fX .

11.1.2 Linearity of the Expected Value

From random variables X1, ..., Xn : Ω → R we get random variable

f : Rn → R
f(X1, ..., Xn) : Ω → R

If f is an affine linear function (x1, ..., xn) 󰀁→ a1x1+ ..+ anxn+ b (a1, ..., an, b ∈ R), we
also write X := a1X1 + ...+ anXn + b.

Theorem: X1, ..., Xn are random variables and X := a1X1 + ... + anXn + b with
a1, ..., an ∈ R.

E [X] = a1E [X1] + ...+ anE [Xn] + b

Proof.

E[X] =
󰁛

ω∈Ω
(a1X1(ω) + ...+ anXn(ω) + b) Pr[ω]

= a1(
󰁛

ω∈Ω
X1(ω) Pr[ω]) + ...+ an(

󰁛

ω∈Ω
Xn(ω) Pr[ω]) + b

= a1E [X1] + ...+ anE [Xn] + b
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11.1.3 Proof of the Inclusion/Exclusion Principle

Let A1, ..., An be outcomes and B := A1 ∪ ... ∪An. We want to compute Pr[B].
We define the indicator variable Ii := IAi and IB for B := Ω\B. We know E

󰀅
IB

󰀆
=

Pr[B] = 1− Pr[B]. Also, IB =
󰁔n

i=1(1− Ii). From the latter we get

IB = 1−
󰁛

1≤i≤n

Ii +
󰁛

1≤i1<i2≤n

Ii1Ii2 −+...+ (−1)nI1 · ... · In

With linearity of the expected value follows

E
󰀅
IB

󰀆
= 1−

󰁛

1≤i≤n

E [Ii] +
󰁛

1≤i1<i2≤n

E [Ii1Ii2 ]−+...+ (−1)nE [I1 · ... · In]

When recognizing that the product of indicator variables is an indicator variable itself,
which stands for the cut of corresponding events we see E [Ii1 · ... · Iik ] = Pr[Ai1 ∩ ...∩Aik ]
for all 1 ≤ i1 < ... < ik ≤ n.

11.2 Variance

The expected value alone does not always sufficiently describes some scenario. We gen-
erally want Pr[|X − E [X] | = ”big”] = ”small”. But often that is not given. Instead of
using the absolute difference to introduce a measure for this property we use the differ-
ence square. That has two benefits: It is differentiable and larger deviations have a higher
weight, which conforms to our intuition.

Definition variance (”Varianz”): X random variable with µ = E [X]. The variance
(”Varianz”) Var[X] is defined as

Var[X] := E
󰀅
(X − µ)2

󰀆
=

󰁛

x∈WX

(x− µ)2 · Pr[X = x]

The measure σ :=
󰁳

Var[X] is called standard deviation (”Standardabweichung”) of X.

Just as the expected value, the variance may not be defined. We don’t consider such
cases.

Theorem: Let X be some arbitrary random variable.

Var[X] = E
󰀅
X2

󰀆
− E [X]2

Proof.

E
󰀅
(X − µ)2

󰀆
= E

󰀅
X2 − 2µX + µ2

󰀆

= E
󰀅
X2

󰀆
− 2µE [X] + µ2 = E

󰀅
X2

󰀆
− 2µµ+ µ2 = E

󰀅
X2

󰀆
− µ2

Theorem: Arbitrary random variable X and a, b ∈ R.

Var[a ·X + b] = a2 ·Var[X]
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Proof. With the definition of variance and linearity of the expected value:

V ar[X + b] = E[(X + b− E[X + b])2] = E[(X − E[X])2] = V ar[X]

For thsi we use the previous theorem and linearity of the expected value:

V ar[a ·X] = E[(a ·X)2]− E[a ·X]2 = a2E[X2]− (aE[X])2 = a2 · V ar[X]

Definition moment (”Moment”): For some arbitrary random variable X, E
󰀅
Xk

󰀆
is

called the k-th moment (”k-te Moment”) and E
󰀅
(X − E [X])2

󰀆
is called the k-th central

moment (”k-te zentrale Moment”).

11.3 Examples

Coin Throw This example showcases that an expected value is not always defined
according to our definition.

We throw a coin until it shows head. Let k denote the number of throws. For the
profit of the game provider, we define

G :=

󰀫
2k k odd

−2k k even

As the individual throws have independent probability 1
2 , we get

Pr[”number of throws = k”] =
1

2

k

For the expected value we then get

∞󰁛

k=1

(−1)k−1 · 2k 1
2

k

= +1− 1 + 1− 1 + 1− 1 + 1− ...

Grid Randomization Algorithm We consider some network and intend to identify a
largest possible independent set (”stable set”). A stable setis a set of vertices, which are
not connected with edges. The randomized algorithm has two basic steps:

1. Each vertex deletes itself with probability 1− p.

2. All remaining edges randomly delete one vertex.

S :=”number of vertices in the stable set computed by the algorithm with n = |V |
and m = |E|”. We use the random variables X :=”number of vertices, which remain”
and Y :=”number of edges, which remain”, each after the first step. So, after the first
algorithm step we have X vertices. In the second step, we remove vertices. For each edge,
one vertex may be removed at most. Hence, we have S ≥ X − Y . From linearity of tthe
expected value: E [S] ≥ E [X]− E [Y ]. We can compute those separately.

For E [X] we consider Xi :=”indicator variable that the i-th vertex remains”. Then
X =

󰁓n
i=1Xi. From E [Xi] = p we get E [X] = n · p.

For E [Y ], Yi :=”indicator variable that the i-th edge remains.” Then Y =
󰁓n

i=1 Yi.
From E [Yi] = p2 (both vertices remain), we get E [Y ] = m · p2.
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Then clearly E [S] ≥ np−mp2

Theorem: For each G = (V,E), the above given algorithm compute san independent
set S with E [S] ≥ np−mp2. n = |V |,m = |E|.

Proof. This is implied by the above algorithm analysis.

Corollary: For each G = (V,E), the above given algorithm computes an indepen-

dent set S with E [S] ≥ n2

2m for p = n
2m . This S is the one with the highest expected

cardinality.

Proof. This follows directly by finding the maximum of np−mp2, which we can get from
the derivative being 0: 0 = n− 2mp ⇒ p = n

2m .

12 Important Discrete Distributions

Here, we consider some common classes of random variables/distributions (remember that
a random variable is fully defined by its density/distribution function).

12.1 Bernoulli distribution (”Bernoulli-Verteilung”)

Random variable X with WX = {0, 1} and fX(x):

• fX(x) = p ⇔ x = 1

• fX(x) = 1− p ⇔ x = 0

• fX(x) = 0, otherwise

p is called success probability (”Erfolgswahrscheinlichkeit”). We writeX ∼ Bernoulli(p)
is X is Bernoulli distributed with success probability p.

• E [X] = p

• Var[X] = E
󰀅
(X − p)2

󰀆
= p(1− p)2 + (1− p)(0− p)2 = p(1−)

12.2 Binomial distribution (”Binomial-Verteilung”)

This can be understood as running an Bernoulli experiment n times and counting success.
Random variable X with XX = {0, 1} and fX(x):

• fX(x) =
󰀃
n
x

󰀄
px(1− p)n−x if x ∈ {0, 1, ..., n}

• fX(x) = 0, otherwise

We write X ∼ Bin(n, p).

• E [X] = np

• Var[X] = np(1 − p), comes from Var[X] = Var[X1] + ... + Var[Xn] (independent
Bernoulli experiments)
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12.3 Poisson distribution (”Poisson-Verteilung”)

Random variable X with WX = N0 and fX(x):

• fX(i) = e−λλi

i! , i ∈ N0

• fX(i) = 0, otherwise

We write X ∼ Po(λ).

• E [X] = λ

• Var[X] = λ

Intuition for this is harder. The Poisson distribution is a probability distribution that
is commonly used to model the number of events that occur within a fixed interval (of
time/space/...), given that these events occur with a known average rate and independently
of each other.

• λ is the average rate of value for some interval

• Pr[X = k] is the probability of k events in the interval

This comes as the limit of the Binomial distribution with Bin(n, λn), n → ∞.
If for a Binomial distribution n is very large and np (expected value) is a small con-

stant: The Binomial distribution can be approximated with the Poisson distribution. The
parameter for the poisson distribution is then given by the expected value of the Binomial
distribution.

12.4 Geometric distribution

Random variable X with WX = N0 and fX(x):

• fX(i) = p(1− p)i−1, i ∈ N0

• fX(i) = 0, otherwise

We write X ∼ Geo(p).

• E [X] = 1
p , E [X] =

󰁓
k≥1 Pr[X ≥ k] =

󰁓
k≥0(1− p)k = 1

p

• Var[X] = 1−p
p2

Notice that we also have FX(n) = Pr[X ≤ n] =
󰁓n

i=1 Pr[X = i] =
󰁓n

i=1 p(1− p)i−1 =
1− (1− p)n. This can also be reasoned with Pr[X ≥ k] =

󰁓∞
i=k Pr[X = i] =

󰁓∞
i=k p(1−

p)i−1 = p(1−p)k−1
󰁓

i≥0(1−p)i = p(1−p)k−1 1
p = (1−p)k−1, which is also the foundation

for the expected value.
For intuition: This can be understood as repeating some Bernoulli experiment until

we see failure. Then the number of throws is x (the number of successes x− 1). With this
we can compute the probability for some number of throws.

Oen important characteristic of this experiment is ”Gedächtnislosigkeit”.

Theorem: X ∼ Geo(p). For all s, t ∈ N:

Pr[X = s+ t|X > s] = Pr[X = t]
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Proof. We know Pr[X ≥ n] = (1− p)n−1. With that:

Pr[X = s+ t|X > s] =
Pr[(X = s+ t) ∩ (X > s)]

Pr[X > s]
=

Pr[X = s+ t]

Pr[X > s]
=

(1− p)s+t−1p

(1− p)s
= (1− p)t−1p = Pr[X = t]

12.5 Coupon Collector

There are n items and in each ’round’, we get draw one of those items. In each round the
probability foreach item is the same (LaPlace). Hence, the probabily for any item in any
round is 1

n . X :=”number of rounds until we have all n items”.
Considering individual rounds is difficult, because the probability of getting a new

card during each round depends on earlier rounds. The solving idea is to consider phases
instead. Phases are an important general concept used in many instances in probability
theory. We define phases in such a way that they are independent and then utilize the
independence of the expected value/variance.

We define phases i to be all rounds in which we have exactly i− 1 distinct items. For
phase i, we then know the probability of success is n−(i−1)

n . For each phase, we also define
Xi :=”length of phase i”. We then clearly get X as the sum of the lengths of all those
phases: X =

󰁓n
i=1Xi.

We compute E [X] by considering all E [Xi]. Notice that each phase is geometrically

distributed (probability constant and wait for success): Xi ∼ Geo(n−(i−1)
n ) with E [Xi] =

n
n−i+1 .

E[X] =

n󰁛

i=1

E[Xi] =

n󰁛

i=1

n

n− i+ 1

= n

n󰁛

i=1

1

n− i+ 1
= n

n󰁛

i=1

1

n
= n ·Hn

= n · (lnn+O(1)) = O(n lnn)

Hn is the n-th harmonic number (”harmonische Zahl”). Analysis tells us that Hn =
lnn+O(1).

For the variance we use
󰁓∞

i=1
1
i2

= π2

6 .

V ar[X] =

n󰁛

i=1

V ar[Xi] =

n󰁛

i=1

1− pi
p2i

≤
n󰁛

i=1

1

p2i

=

n󰁛

i=1

(
n

n− i+ 1
)2 = n2

n󰁛

i=1

1

i2
≤ n2π

2

6

Chebyshev, we then get

Pr[|X − E[X]| ≥ f(n)] ≤ V ar[X]

(f(n))2
≤ π2n2

6(f(n))2

To better understand this, consider whether getting the first or last k cards would
better. It is always better to get the last card(s), even if they are noticeably less.

36



• Getting the first cards

If we get the first k cards, we can disregard the first k phases, as we have basically
skipped those. For E[X], we hence must only consider this sum:

E[X] =

n󰁛

i=1+k

E[Xi] =

n−k󰁛

i=1

1

i
= n ·Hn−k

With k = n
2 , then = n ln(n2 ) +O(n) = n lnn+O(n).

• Getting the last cards

If we get the last k cards, we can disregard the last k phases, as we skip those. For
E[X], we hence must only consider this sum:

E[X] =

n−k󰁛

i=1

E[Xi] =

n󰁛

i=k+1

1

i
= n(Hn −Hk)

With k = 1, then = n(Hn −Hk) +O(n) = n ln 2 +O(n) = O(n).

12.6 Negative binomial distribution

Random variable X with WX = N and fX(x):

• fX(i) =
󰀃
i−1
n−1

󰀄
(1− p)ipn, i ∈ N

• fX(i) = 0, otherwise

We write X ∼ NegativeBinomial(n, p).

• E [X] = n
p

• Var[X] also comes with linearity from geometric distribution

For intuition: This considers doing an Bernoulli experiment with probability p until
we have seen success n times. Pr[X = k] computes the probability that we manage to do
so in exactly k tries.

13 Multiple Random Variables

To work with multiple random variables X,Y in the same probability space, we consider
Pr[X = x, Y = y] = Pr[{ω ∈ Ω|X(ω) = x, Y (ω) = y}].

Also, we have a shared density function fX,Y := Pr[X = x, Y = y].

Definition marginal density (”Randdichte”): Consider random variables X,Y

fX =
󰁛

y∈WY

fX,Y (x, y)

This holds because Y = y is a disjunct partitioning (”Zerlegung”) of the probability
space, and we can use the addition rule.

Analogously for the distribution function and marginal distribution:

• FX,Y (x, y) := Pr[X ≤ x, Y ≤ y]
= Pr[{ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y}]
=

󰁓
x′≤x

󰁓
y′≤y fX,Y (x

′, y′)

• FX(x) =
󰁓

x′≤x fX(x′) =
󰁓

x′≤x

󰁓
y∈WY

fX,Y (x
′, y)
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13.1 Independence of Random Variables

Definition: Random variables X1, ..., Xn are independent if and only if for all
(x1, ..., xn) ∈ WX1 × ...×WXn

Pr[X1 = x1, ..., Xn = xn] = Pr[X1 = x1] · ... · Pr[Xn = xn]

equivalently: fX1,...,Xn(x1, ..., xn) = fX1(x1) · ... · fXn(xn)

We do not require this to hold for subsets as those equations follows from this.

Lemma: X1, ..., Xn independent random variables. S1, ..., Sn ⊆ R arbitrary sets.

Pr[X1 ∈ S1, ..., Xn ∈ Sn] = Pr[X1 ∈ S1] · ... · Pr[Xn ∈ Sn]

Proof. We can assume that Si are subsets of the codomain wlog.

Pr[X1 ∈ S, ..., Xn ∈ Sn]

=
󰁛

x1∈S1

...
󰁛

xn∈Sn

Pr[X1 = x1, ..., Xn = xn]

=
󰁛

x1∈S1

...
󰁛

xn∈Sn

Pr[X1 = x1] · ... · Pr[Xn = xn]

= (
󰁛

x1∈S1

Pr[X1 = x1]) · ... ·
󰀣

󰁛

xn∈Sn

Pr[Xn = xn]

󰀤

= Pr[X1 ∈ S1] · ... · Pr[Xn ∈ Sn]

Corollary: X1, ..., Xn independent random variables. I = {i1, ..., ik} ⊆ [n]. Then,
Xi1 , ..., Xik are also independent.

Proof. This is the proof from the script. However, this follows from the intuition why we
do not require to consider subsets in the definition.

For xij ∈ WXij
, 1 ≤ j ≤ k, we define Si = WXi if i ∕∈ I and Si = {xi} if i ∈ I. For

i ∕∈ I, Xi ∈ Si is then trivially valid and with Lemma 2.53 we get

Pr[Xi1 = x1, ..., Xik = xk] = Pr[X1 ∈ S1, ..., Xn ∈ Sn]

= Pr[X1 ∈ S1]...Pr[Xn ∈ Sn] = Pr[Xi1 = xi1 ]...Pr[Xik = xik ]

Theorem: f1, ..., fn are real functions. If X1, ..., Xn are independent, then also
f(X1), ..., f(Xn) are independent.

Proof. We consider arbitrary z1, ..., zn with zi ∈ Wf(Xi) for i = 1, ..., n. For zi we define
the set Si = {x|f(x) = zi}. With the Lemma above:

Pr[f1(X1) = z1, ..., fn(Xn) = zn] = Pr[X1 ∈ S1, ..., Xn ∈ Sn]

= Pr[X1 ∈ S1]...Pr[Xn ∈ Sn] = Pr[f1(X1) = z1]...Pr[fn(Xn) = zn]
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Theorem: X,Y are two indicator variables. Then X and Y are independent ⇔
fX,Y (1, 1) = fX(1) · fY (1).

Proof. This follows when considering the complementary elements.

13.2 Compound Random Variables (”zusammengesetzte Zufallsvariablen”)

g is some function and X1, ..., Xn are random variables. We construct random variable
Y := g(X1, ..., Xn).

Theorem: X,Y independent random variables. Z := X + Y . Then:

fZ(z) =
󰁛

x∈WX

fX(x) · fY (z − x)

Proof. This follows from the law of total probability.

fZ(z) = Pr[Z = z] =
󰁛

x∈WX

Pr[X + Y = z|X = x] · Pr[X = x]

=
󰁛

x∈WX

Pr[Y = z − x] · Pr[X = x] =
󰁛

x∈WX

fX(x) · fY (z − x)

With this, one can show for instance

• Bin(n, p) + Bin(m, p) = Bin(n+m, p)

• Poisson(λ1) + Poisson(λ2) = Poisson(λ1 + λ2)

13.3 Moments of Compound Random Variables

Theorem: X1, ..., Xn independent random variables.

E [X1 · ... ·Xn] = E [X1] · ... · E [Xn]

Proof. The general case follows by induction from this:

E[X · Y ] =
󰁛

x∈WX

󰁛

y∈WY

xyPr[X = x, Y = y]

=
󰁛

x∈WX

󰁛

y∈WY

xyPr[X = x] Pr[Y = y]

=
󰁛

x∈WX

xPr[X = x]
󰁛

y∈WY

yPr[Y = y]

= E[X] · E[Y ]
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Theorem: X1, ..., Xn independent random variables. X = X1 + ...+Xn.

Var[X] = Var[X1] + ...+Var[Xn]

Proof. The general case follows by induction from this. We intend to show:

E[(X + Y )2]− E[X + Y ]2 = E[X2]− E[X]2 + E[Y 2]− E[Y ]2

This holds as

E[(X + Y )2] = E[X2 + 2XY + Y 2] = E[X2] + 2E[X]E[Y ] + E[Y 2]

and

E[X + Y ]2 = (E[X] + E[Y ])2 = E[X]2 + 2E[X]E[Y ] + E[Y ]2

Multiplicity of the variance does generally NOT hold.

13.4 Wald’s Equations

Theorem Wald’s equation: N,X independent random variables. WN ⊆ N. Z :=󰁓N
i=1Xi where Xi are independent copies of X. Then:

E [Z] = E [N ] · E [X]

Proof.

E[Z] =
󰁛

n∈WN

E[Z|N = n] · Pr[N = n]

=
󰁛

n∈WN

E[X1 + ...+Xn] · Pr[N = n]

=
󰁛

n∈WN

n · E[X] · Pr[N = n] = E[X]
󰁛

n∈WN

n · Pr[N = n] = E[X] · E[N ]

14 Estimating Probabilities

The intention here is similar as with the variance. The variance is a general metric to
measure the deviation from the expected value. Here, we compute specific bounds for for
deviations of the expected value for random variables.

14.1 Markov’s Inequality

Theorem Markov’s Inequality (”Ungleichung von Markov”): X is some random vari-
able, which is never negative. ∀t ∈ R, t > 0:

Pr[X ≥ t] ≤ E [X]

t

Equivalently: Pr[X ≥ t · E [X]] ≤ 1
t .
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Proof.

E[X] =
󰁛

x∈WX

x · Pr[X = x]

=
󰁛

x∈WX ,x<t

x · Pr[X = x] +
󰁛

x∈WX ,x≥t

x · Pr[X = x]

≥
󰁛

x∈WX ,x≥t

x · Pr[X = x]

≥
󰁛

x∈WX ,x≥t

t · Pr[X = x]

= t ·
󰁛

x∈WX ,x≥t

Pr[X = x]

= t · Pr[X ≥ t]

14.2 Chebyshev’s Inequality

Theorem Chebyshev’s Inequality (”Ungleichung von chebyshev”): X random variable.
t ∈ R, t > 0. Then:

Pr[|X − E[X]| ≥ t] ≤ V ar[X]

t2

Equivalently: Pr[].

Proof. We have Pr[|X − E [X] | ≥ t] = Pr[(X − E [X])2 ≥ t2].
We define Y := (X − E [X])2. Notice that E [Y ] = Var[X].
Because Y ≥ 0, we can apply Markov’s Inequality and get:

Pr[|X − E [X] | ≥ t] = Pr[Y ≥ t2] ≤ E [Y ]

t2
=

Var[X]

t2

With the standard deviation σ we get

Pr[|X − E[X]| ≥ Cσ] ≤ V ar[X]

(Cσ)2
=

1

C2

14.3 Chernoff ’s Inequality

Theorem Chernoff’s Inequality (”Ungleichung von Chernoff”): X1, ..., Xn independent
Bernoulli distributed random variables. Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi. We
have X :=

󰁓n
i=1Xi.

1. Pr[X ≥ (1 + δ)E [X]] ≤ e−
1
3
δ2E[X], ∀0 < δ ≤ 1

2. Pr[X ≥ (1− δ)E [X]] ≤ e−
1
2
δ2E[X], ∀0 < δ ≤ 1

3. Pr[X ≥ t] ≤ 2−t, t ≥ 2eE [E]
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Proof. The basic idea is to as follows:

Pr[X ≥ (1 + δ)E[X]] ⇔ Pr[etX ≥ et(1+δ)E[X]] ≤ E[etX ]

et(1+δ)E[X]
≤ ... ≤ e−

1
3
δ2E[X]

The ... corresponds to some clever transformation steps and a smart choice of t.
Case 3 is a bit different (in choosing a different base) but follows the same concept.

We consider it as an example.

Pr[X ≥ t] ≤ 2−t

⇔ Pr[4X ≥ 4t] ≤
E
󰀅
4X

󰀆

4t

using Markov & e increasing

Notice that Xi are independent. We can, hence, use multiplicity of the expected value
to compute E

󰀅
4X

󰀆
:

E
󰀅
4X

󰀆
= E

󰁫
4
󰁓n

i=1 Xi

󰁬
= E

󰀥
n󰁜

i=1

4Xi

󰀦
=

n󰁜

i=1

E
󰀅
4Xi

󰀆

E
󰀅
4Xi

󰀆
is either 1 or 4 as Xi is an indicator variable. We can, hence, directly use the

definition and some analysis to compute a bound for the expected value:

E
󰀅
4Xi

󰀆
= 4pi + (1− pi) = 1 + 3pi ≤ e3pi

From that follows the solution

E[4X ] ≤
n󰁜

i=1

e3pi = e3
󰁓n

i=1 pi = e3E[X]
t≥2eE[X]

≤ e
3t
2e ≤ 2t

Pr[X ≥ t] ≤ E[4X ]

4t
≤ 2t

4t
= 2−t

14.4 Comparison of Inequalities

Depending on δ and n, the different Inequalities provide different bounds. It can not be
generally said, which inequality is better as that depends on the parameters.

n Chebyshev Chernoff

1000 0.1 0.270961

2000 0.05 0.0424119

5000 0.02 0.000244096

10000 0.01 5.77914 · 10−8

100000 0.001 4.14559 · 10−73

Figure 3: Comparison of Chebyshev und Chernoff
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15 Randomized Algorithms

Randomized algorithms are an application of probability theory in computer science. Re-
member that a non-randomized/standard algorithm works by taking an input I, running
an algorithm A, and by doing so computing an output A(I). We must always prove cor-
rectness, i.e., that A(I), for some I, is the intended output. Similarly, we must show that
for some I with |I| = n that some bound O(f(n)) holds.

Randomized algorithm work differently. They have some input I but the algorithm
also has access to random bits/numbers R from which the output A(I,R) is computed.
So, the output can generally not be reproduced (not considering PRNGs with the same
seed).

Here, we must also prove correctness: Either as before or just giving a correctness
probability Pr[A(I,R) is correct] ≥ .... The runtime for some |I| = n may similarly be as
before or Pr[runtime ≤ O(f(n))].

The goal is to design algorithms, where the bounds leave no practically relevant error,
i.e., correctness is effectively 1.

Considering the random numbers: We assume that the algorithm may specify some
random variable X and then receive numbers, which could not be reasoned to not be
random (but may be pseudo-generated). The algorithm must be able to assume indepen-
dence.

15.1 Las-Vegas Algorithms

Las-Vegas algorithms are characterized by never returning a false answer. There are two
options for this: Either the runtime is not bound and only has an expected value etc., or
the algorithm terminates when reaching some runtime and returns unknown. This makes
only sense if the expected runtime is efficient, i.e., polynomial. Otherwise, why should we
even worry about introducing a new kind of algorithm?

We can easily convert both kinds of algorithms into each other. If the algorithm only
has an expected runtime, we simply run it for twice the expected runtime. Markov then
tells us that the probability that we do not get an answer is ≤ 1

2 . We may now repeat this
algorithm some times to increase the probability for a useful result. Thus, we now have a
constant runtime and only an estimated probability to get a result.

If we have an algorithm which would have a finite runtime and only gives an expected
value to deliver a useful result, specifically it returns unknown with probability δ, we can
do the inverse. We repeatedly run this algorithm until we get a result. This is a geometric
distribution. Hence, we have success probability 1− δ and the expected runtime 1

1−δ .
We consider ’improving’ the probability of the version which has a finite runtime now.

Theorem Las-Vegas Algorithm: Let A be some randomized algorithm, which never
returns a wrong answer but unknown at times. We know

Pr[A(I) correct] ≥ 󰂃

For all δ > 0, Aδ is the algorithm which calls A until it gets a useful return value or has
gotten unknown for N = 󰂃−1 ln δ−1 times. Then, it returns unknown. Aδ

Pr[Aδ(I) correct] ≥ 1− δ

Proof. The probability that A outputs only unknown for N times is (1 − 󰂃)N . For Aδ’s
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correctness we then get we get:

(1− 󰂃)N ≤ e−󰂃N = eln δ = δ 1− x ≤ e−x

15.2 Monte-Carlo Algorithms

Monte-Carlo Algorithm are a different kind of randomized algorithm. Those always have
a polynomial runtime and at times they produce a wrong output. The goal is that
Pr[wrong answer] =”minimal”.

The error of such a Monte-Carlo algorithm can either be one- or two-sided. We will
consider the one-sided case first as it is easier to understand. Here, only inputs which
should get one of two responses may have a wrong return value. The other type always
produces a correct output.

Theorem Monte-Carlo Algorithm, one-sided: Let A be a randomized algorithm, which
always outputs YES or NO.

• Pr[A(I) = YES] = 1, if I is a YES instance

• Pr[A(I) = NO] ≥ 󰂃, if I is a NO instance

For δ > 0, Aδ then is the algorithm which calls A until it gets NO (which then is the
answer) or it gets YES N = 󰂃−1 ln δ−1 times (which then is the answer).

Pr[Aδ(I) correct] ≥ 1− δ

Proof. The case that I is a YES instance is trivially correct.
If I is a NO-instance, each instance returns NO with probability at least 󰂃. The

probability that among N = 󰂃−1 ln δ−1 independent calls there is no NO is at most

(1− 󰂃)N ≤ e−󰂃N = e− ln δ−1
= δ

Accordingly, Pr[Aδ(I) correct] ≥ 1− δ.

Now, we consider the two-sided case.

Theorem:
Let 󰂃 > 0 and A be a randomized algorithm, which always outputs YES or NO.

Pr[A(I) correct] ≥ 1

2
+ 󰂃

For δ > 0, Aδ is the algorithm, which makes N = 4󰂃−2 ln δ−1 independent calls to A and
returns the majority result. Then:

Pr[Aδ(I) correct] ≥ 1− δ

Proof. Trivially, 󰂃 ≤ 1
2 . We set p := Pr[A(I) correct]. Let X be the number of correct

responses from A among the N calls to A(I). We then have X ∼ Bin(N, p).

Pr[Aδ(I) correct] ≥ Pr[X ≥ N

2
] = 1− Pr[X ≤ N

2
]
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N
2 ≤ E [X] as E [X] = pN ≥ N

2 + 󰂃N . From that follows:

N

2
≤ (1− 󰂃)(

N

2
+ 󰂃N) ≤ (1− 󰂃)E[X]

So we can use E [X] ≥ N
2 = 2󰂃−2 ln δ−1 and Chernoff’s Inequality:

Pr[X ≤ N

2
] ≤ Pr[X ≤ (1− 󰂃)E[X]] ≤ e−

1
2
󰂃2E[X] ≤ δ

From that then follows Pr[Aδ(I) correct] ≥ 1− δ.

Theorem: 󰂃 > 0 and A some maximization algorithm with Pr[A(I) ≥ f(I)] ≥ 󰂃.
Then, for all δ > 0: Aδ is the algorithm which makes N = 󰂃−1 ln δ−1 independent calls
to A and returns the best/largest result. Then:

Pr[Aδ(I) ≥ f(I)] ≥ 1− δ

Proof.

(1− 󰂃)N ≤ exp(−󰂃N) = exp(− ln δ−1) = δ

15.3 Prime Number Test

For various applications we would like to know whether some number is prime. First,
we know that π(x) := |{n ∈ N|n ≤ x, n prime}| ∼ x

lnx (true asymptotic bound) as can
be shown with Target Shooting (see concept below). But that does not give information
about individual numbers. But it shows that if we had some way to test numbers for
primality this would be very helpful as the prime function just given implies a relatively
high density of primes, even for large numbers. Considering 200 bits, about 1

139 .
We exclude brute force immediately because it’s effort is way to high for 200 bits and

more, what is required for modern applications.

15.3.1 Euclid Prime Test

We design a Monte-Caro algorithm based on those facts. Notice that the largest common
divisor (ggT) can be computed in O((log nm)3).

ggT (a, n) > 1, a ∈ [n− 1] ⇒ n not primt

ggT (a, n) = 1 ∕⇒ n prime

1 EuclidPrimeTest(n):

2 choose a ∈ [n-1], randomly , uniformly

3 if ggT (a, n) > 1: return ’not prime ’

4 else: return ’prime ’

If n is not prime this may wrongly output ’prime’ with probability |Z∗
n|

n−1 , Z
∗
n = {a ∈

[n − 1]|ggT (a, n) = 1}. From discrete mathematics we know that Z∗
n is a multiplicative

group and that some function ϕ(n) := |Z∗
n| exists.

If n = p2 (p being prime), we get ϕ(n) = p(p− 1) = n−
√
n. Then, |Z∗

n|
n−1 ≈ 1− 1√

n
.
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15.3.2 Fermat Prime Test

Remember this from group theory (Lagrange’s theorem): IfH is a subgroup of G (H ≤ G),
then |H| is a divider of |G|.

Also, ord(a) := min{i ∈ N|ai = 1} is the order of the subgroup generated by a. And

as ord(a)||G|: a|G| = a
ord(a)

|G|
ord(a) = 1

|G|
ord(a) = 1.

So, in Z∗
n : aφ(n) = 1 for all a ∈ Z∗

n. If n prime, even an−1 = 1.
The latter is Fermat’s little theorem: If n ∈ N is prime, for all a ∈ [n − 1], we have

an−1 ≡ 1( mod n) or rather an−1 = 1 in Z∗
n.

From that, we get the Fermat prime test.

1 FermatPrimeTest(n):

2 choose a from [n-1] randomly , uniformly

3 IF ggT (a, n) > 1 OR an−1 ∕≡ 1( mod n) THEN

4 RETURN ’not prime ’

5 ELSE

6 RETURN ’prime ’

an−1 ∕≡ 1 mod n can be effectively computed with binary exponentiation. And
ggT (a, n) > 1 is redundant, because ggT (a, n) > 1 ⇒ an−1 ∕≡ 1 mod n.

This is a Monte-Carlo algorithm too as ’prime’ may be also outputted for non-prime
numbers. The error probability is < 1

2 except for Carmichael numbers. The error occurs if
n is not prime but for some a: an−1 ≡ 1 mod n. Such a are called pseudoprime bases of
the pseudoprime n. We define PBn := {a ∈ Z∗

n|an−1 ≡ 1 mod n} to be all pseudoprime
bases for n. PBn is a subgroup of Z∗

n.
If PBn ∕= Z∗

n (which holds for all non-primes n except Carmichael numbers, see below),

then |PBn| must be a proper divisor of |Z∗
n|. So |PBn| ≤ ϕ(n)

2 ≤ n−1
2 . If n is not prime,

which is the case for which we intend to compute the error probability, we can even state
< n−1

2 .

So, for non-Carmichael numbers we can justify that the one-sided error is |PBn|
n−1 < 1

2 .
As already mentioned before, this does not work for Carmichael numbers. Some n is

a Carmichael number if n is not prime but PBn = Z∗
n.

Another interesting remark is that f(n) := 2n−1 mod n for n ≥ 2 is a pretty good
prime indicator. It first fails at 341, ...

15.3.3 ’not prime’ certificate, i.e., ”algorithm efficiency summary”

To prove that some n ∈ N is not prime, we can provide a certificate/proof. For n not
prime, a ∈ [n− 1] is ...

• trivial certificate

If a ≥ 2 and a|n. There are > 1
n such certificates. Considering a ∈ [⌊

√
n⌋] is

sufficient.

• Euclid certificate

If ggT (a, n) > 1. There are > 1√
n
such certificates.

• Fermat certificate

If an−1 ∕≡ 1 mod n. Neglecting Carmichael numbers there are > 1
2 such certificates.

What’s special about the Fermat certificate is that it shows that n is not prime without
providing a divisor.
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15.3.4 Miller-Rabin certificate

Before, we considered Z∗
n. Here we consider Zn, which is a field if n is prime. In a field,

x2 = 1 has two solutions: x = 1 and x = −1 = n− 1. (We always consider mod n here.)
We now iteratively do a process, starting with k = 1:

• Compute c = a
n−1
k . There are only two options for the result by what has just been

said.

• If c = 1 and n−1
2 is even, we can take the root by setting k = k ∗ 2 and restart our

iteration.

• If c = −1 or n−1
k is odd we must stop.

• If c ∕∈ {1, n− 1}, then we have found a certificate for n not being prime.

Initially, an−1 = 1 if n ≥ 2 is prime. So, we always have a place to start.
Formally: Consider 2 < n ∈ N, n− 1 = 2kd with d ∈ N uneven and k ∈ N0. a ∈ [n− 1]

is a Miller-Rabin certificate for ’n not prime’ if

(ad, a2d, ..., a2
kd) ∕=

󰀫
(1, 1, 1, ..., 1)

(∗, ..., ∗, n− 1, 1, ..., 1)

1 MillerRabinPrimeTest(n):

2 d,k from N with n− 1 = 2kd, d uneven

3 choose a in [n-1] randomly , uniformly

4 IF ((ad mod n! = 1) AND (not exists i < k : a2
id mod n = n− 1))

5 RETURN ’not prime ’

6 ELSE

7 RETURN ’prime ’

This is a simpler to understand version.

1 MillerRabinPrimeTest(n):

2 IF n==2: RETURN ’prime ’

3 ELSE IF n even OR n==1: RETURN ’not prime ’

4 chosse a from 2,...,n-1 randomly , uniformly

5 k,d from Z with n− 1 = d2k and d uneven

6 x = ad

7 IF x==1 OR x==n-1: RETURN ’prime ’

8 REPEAT k-1 times:

9 x = x2 (mod n)

10 IF x==1: RETURN ’not prime ’

11 IF x==n-1: RETURN ’prime ’

12 RETURN ’not prime ’

The output ’prime’ is wrong with probability ≤ 1
4 . There was no justification given

for this.
The runtime of this algorithm is O(log n).

15.3.5 Remarks

The above protocols show that one can efficiently determine whether a number is prime
probabilistically. However, finding divisors is considered way harder, even probabilistically.
That finding the divisor is difficult is the foundation for many cryptography protocols

47



including RSA. The Miller-Rabin test is used in practice. Additionally, the Solovay-
Strassen test is also used in practice. Both are classical randomized algorithms from the
70s.

Note that a deterministic polynomial prime test exists: the AKS prime number test
(Agrawal-Kayal-Saxena, 2002).

15.4 Target Shooting

Target shooting algorithms try to approximate some value, specifically the relative size of
two sets.

We have sets S ⊆ U of unknown size. We aim to identify |S|
|U | . We have Is : U → {0, 1},

which indicates u ∈ S.

1 TARGET -SHOOTING:

2 choose u1, ..., uN from U randomly , independent , uniformly

3 return ( 1
N ) ∗

󰁓N
i=1 IS(ui)

There are two assumptions to this: IS must be efficiently computable and finding
u ∈ U randomly, independently, and uniformly must also be efficiently possible.

We define the random variable Yi := IS(ui) for i ∈ [N ]. Notice that Pr[Yi = 1] = |S|
|U |

for i ∈ [N ]. Yi are independent Bernoulli variables.

Y := 1
N

󰁓N
i=1 Yi =

1
N

󰁓N
i=1 IS(ui). We get E [Y ] = |S|

|U | , independent of N . However,
the variance depends on N and shows that higher N increase proximity to the actual
value.

Var[Y ] =
1

N

󰀣
|S|
|U | −

󰀕
|S|
|U |

󰀖2
󰀤

That comes from Var[Y ] = E
󰀅
Y 2

󰀆
− E [Y ]2:

Var[Y ] = E
󰀅
Y 2

󰀆
− E [Y ]2

= E

󰀵

󰀷 1

N2

N󰁛

i=1

N󰁛

j=1

YiYj

󰀶

󰀸− |S|
|U |

2

=
1

N2

󰀣
(N2 −N)

|S|
|U |

2

+N
|S|
|U |

󰀤
− |S|

|U |

2

=
N2 −N

N2

|S|
|U |

2

+
N

N2

|S|
|U | −

|S|
|U |

2

=
1

N
(
|S|
|U | −

|S|
|U |

2

)

Theorem: δ, 󰂃 > 0. If N ≥ 3 |U |
|S| 󰂃

−2 ln(2δ ). Then, the output of the target shooting

algorithm is in the interval [(1− 󰂃) |S||U | , (1 + 󰂃) |S||U | ] with probability at least 1− δ.

Proof. We must show

Pr[|Y − E[Y ]| ≥ 󰂃 · E[Y ]] ≤ δ
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With Z :=
󰁓N

i=1 Yi = NY this is equivalent to

Pr[|Z − E[Z]| ≥ 󰂃 · E[Z]] ≤ δ

Because Yi are independent Bernoulli variables, we can use Chernoff.

Pr[|Z − E[Z]| ≥ 󰂃 · E[Z]] ≤ 2e−󰂃2E[Z]/3 = 2e
−󰂃2

N|S|
3|U|

Because of n = 3 |U |
|S| 󰂃

−2 ln(2δ ) this is at most δ.

15.5 QuickSort

We have discussed QuickSort in an earlier course and shown worst-case runtime O(n2). It
was mentioned that the algorithm is still relevant due to its expected runtime of O(n log n),
which we will show now.

1 QuickSort(A,l,r):

2 if l ≥ r: return

3 p = Uniform ({l,l+1,...,r-1,r}) # chosing a random pivot element

4 t = Partition(A,l,r,p) # returns the index of the pivot after

partitioning

5 QuickSort(A,l,t-1)

6 QuickSort(A,t+1,r)

Tl,r :=”(random) number of comparisons is ‘QuickSort(A,l,r)‘”. We want to show that
E [T1,n] ≤ 2(n− 1) lnn+O(n). For l < r we get

E[Tl,r] =

r󰁛

i=l

Pr[t = i](r − l + E[Tl,i−1] + E[Ti+1,r])

=
1

r − l + 1

r−l󰁛

i=0

(r − l + E[Tl,l+i−1] + E[Tl+i+1,r])

E [Tl,r] does not depend on the specific values l and r but only on their difference/the
number of elements which we consider.

• tn = 0, n ≤ 1

• tn = 1
n

󰁓n−1
i=0 (n− 1 + ti + tn−i−1), n ≥ 2

See that E [Tl,r] = tr−l+1 for arbitrary l and r (can be formally shown with induction).
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We now do some computations to find an upper bound for tn:

Some pre-calculations, which follows directly from above.

n · tn =

n−1󰁛

i=0

(n− 1 + ti + tn−i−1)

(n− 1)tn−1 =

n−2󰁛

i=0

(n− 2 + ti + tn−i−2)

Now we subtract the second from the first equation and get:

n · tn − (n− 1)tn−1 = 2(n− 1) + 2tn−1 − 1

⇒ tn =
n+ 1

n
tn−1 +

2(n− 1)

n
− 1

n
≤ n+ 1

n
tn−1 + 2

With induction over n ≥ 2 one can show that this hodls:

tn ≤ 2

n+1󰁛

i=3

n+ 1

i

Remember that
󰁓n

i=1
1
i = Hn = lnn+O(1). Using that, we can show that E [T1,n] =

tn ≤ 2(n+ 1) lnn+O(n).
This corresponds directly to our definition of a Las-Vegas algorithm: Never a false

answer and the runtime being a random variable. However, we can rewrite the algorithm to
confirm to our other definition. Specifically, we define ‘SuperQuickSelect‘. This algorithm
runs standard ‘QuickSelect‘. But as soon as the runtime is double the expected runtime,
‘QuickSelect‘ is terminated and the algorithm returns unknown. From Markov’s inequality
we get that the probability for ??? is ≤ 1

2 as Pr[X ≥ 2E[X]] ≤ E[X]
2E[X] .

Then, we define ‘SuperSuperQuickSelect‘. This algorithm runs ‘SuperQuickSelect‘ n
times. If only one ‘SuperQuickSelect‘ returns a valid result, then also this algorithm does.
So, this algorithm only returns unknown if ‘SuperQuickSelect‘ returns unknown n times,
which as probability 2−n. The runtime, of course, increases with some constant factor
n from ‘SuperQuickSelect‘, but that is irrelevant for O notation. And when choosing
n sufficient, such as n = 100, the probability that this algorithm returns unknown is
negligible.

15.6 QuickSelect

QuickSelect builds on the same idea as QuickSort. However, it only tries to find some
element in an ordered array instead of sorting the entire array. Hence, we can save some
work. Specifically, we must only call the recursion once.

1 QuickSelect(A,l,r,k):

2 p = Uniform ({l,l+1,...,r-1,r})

3 t = Partition(A,l,r,p)

4 if t=l+k-1 then

5 return A[t]

6 else if t > l+k-1 then

7 return QuickSelect(A,l,t-1,k)

8 else

9 return QuickSelect(A,t+1,r,k-t)
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When running ‘QuickSelect(A,1,n,k)‘ we get N calls to ‘Partition‘ and a sequence
of further calls to ‘QuickSelect‘ for subarrays: (l0, r0, k0), (l2, r2, k2), ..., (lN , rN , kN ) with
(l0, r0, k0) = (1, n, k).

During iteration i, t is chosen uniformly as ti from {li, ..., ri}. So either (li+1, ri+1) =
(li, t−1) or (li+1, ri+1) = (t+1, ri). The number of comparisons for ‘QuickSelect(A,1,n,k)‘
then is T =

󰁓N
i=1(ri − li).

We define Nj as the number of calls to ‘QuickSelect‘ with 3
4

j
n < ri − li + 1 ≤ 3

4

j−1
n.

T ≤
∞󰁛

j=1

Nj
3

4

j−1

n

With linearity of the expected value follows:

E[T ] ≤ n

∞󰁛

j=1

E[Nj ](
3

4
)j−1

Now we want to find an upper bound for E [Nj ] to solve this equation. Being at step
j, the probability that ri+1 − li+1 + 1 is ≤ 3

4(ri − li + 1) is ≥ 1
2 . This is apparent when

considering that with probability 1
2 we choose the new element from the middle 1

2(ri−li+1)
elements. Following the laws of geometric distributions, we get E [Nj ] ≤ 2.

E[T ] ≤ 2n

∞󰁛

j=1

3

4

j−1

= 8n

So for QuickSelect we have O(n), i.e., linear runtime.

15.7 Finding Duplicates

... Not done.
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Part III

Algorithms

16 Longest Paths

As many graph problems, finding longest paths has many applications such as network
analysis, scheduling, and genetics.

Definition long-path problem: Given (G,B), G being some graph and B ∈ N0. Identify
whether a path of length B exists in G.

Remember that a path is a sequence of unique, adjacent vertices. A path of length l
has l + 1 vertices.

The long-path problem is NP-complete and we can find Hamiltonian cycles using it.
Specifically, we can find the longest path/all longest paths. If length is n−1 and endpoints
connect, we have found a Hamiltonian cycle. If endpoints do not connect or the maximum
length is not n− 1, a Hamiltonian cycle does not exist.

Formally, for some graph G with n vertices we can efficiently construct G′ with n′ ≤
2n− 2 vertices such that G has a Hamiltonian cycle if and only if G′ has a path of length
n.

• InG, choose arbitrary vertex v, remove v, and replace all incident edges {v, w1}, ..., {v, wdeg(v)}
with {ŵ1, w1}, ..., {ŵdeg(v), wdeg(v)} where ŵi are new vertices. This is graph G′ with
(n− 1) + deg(v) ≤ 2n− 2 vertices.

• We show: Hamiltonian cycle in G ⇒ path of length n in G′.

〈v1, ..., vn, v1〉 Hamiltonian cycle in G. Without loss of generality v = v1. Then,
〈v̂2, v2, ..., vn, v̂n〉 is a path of length n in G′.

• We show: Path of length n in G′ ⇒ Hamiltonian cycle in G.

Let 〈u0, u1, ..., un〉 be a path of length n in G′. Notice that u1, u2, ..., un−1 must
have degree at least 2. Hence, those must be the n − 1 vertices, which survived
the construction from G to G′. Also, u0 = ŵi and un = ŵj must be two different
of the new vertices with degree 1 in G′. Hence, u1 = wi and un−1 = wj and
〈v, u1, ..., un−1, v〉 is a Hamiltonian cycle in G.

The construction from G to G′ can be clearly done in O(n2) steps.

Theorem: If we could decide the LONG-PATH problem for graphs with n vertices in
t(n), then we could determine whether a graph with n vertices has a Hamiltonian cycle
in t(2n− 2) +O(n2).

Nevertheless, in many applications the shortest paths are relatively short compared to
the graph size (genetics for instance). For the length being in O(log n) we now consider an
efficient probabilistic algorithm. Instead of addressing the problem directly, we will first
solve a related problem, from which we will derive the solution. We need some prerequisites
to understand the following:

• [n] := {1, 2, ..., n}
[n]k is the set of the sequences over [n] of length k, from which follows that |[n]k| = nk

󰀃[n]
k

󰀄
is the set of k-element subsets of [n], from which follows that |

󰀃[n]
k

󰀄
| =

󰀃
n
k

󰀄
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• For some undirected G = (V,E), we have
󰁓

v∈V deg(v) = 2|E|.

• k vertices can be colored with [k] in kk ways (also considering ’invalid’ colorings).

k! of those colorings use each color only once.

• For c, n ∈ R+: clogn = nlog c.

2logn = nlog 2 ⇒ 2O(logn) = nO(1) is polynomial in n.

• For n ∈ N0:
󰁓n

i=0

󰀃
n
i

󰀄
= 2n.

– Reason with binomial theorem:
󰁓n

i=0

󰀃
n
i

󰀄
xiyn−i = (x+ y)n

– Reason by considering
󰁓n

i=0

󰀃
n
i

󰀄
as the sum of the count of all subsets of certain

sizes, i.e., the number of all subsets (2n)

• For n ∈ N0:
n!
nn ≥ e−n.

Reason with en =
󰁓∞

i=0
ni

i! ≥ nn

n!

• Repeating some experiment with success probability p yields the expected value 1
p

until success. (geometric distribution)

• dynamic programming

16.1 Colorful Paths (”Bunte Pfade”)

For some k ∈ N and G = (V,E) we consider some (not necessarily ’valid’) coloring γ :
V → [k]. We say that a path is colorful if all its vertices have different colors.

Definition colorful-path problem: Given (G, γ), G = (V,E) and γ : V → [k], decide
whether a colorful path of length k − 1 (i.e., with k vertices) exists in G.

We fix some vertex v and i ∈ N0 and consider colorful paths of length i (i+1 vertices)
which end in v and consider all color sets, which we might encounter:

Pi(v) := {S ∈
󰀕

[k]

i+ 1

󰀖
|∃ colorful path colored with S which ends in v }

Notice:

• ∀S ∈ Pi(v) : γ(v) ∈ S

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)}|x ∈ N(v), γ(x) ∕= γ(v)}

• ∃ colorful path with k vertices ⇔
󰁖

v∈V Pk−1(v) ∕= ∅

We can then dynamically compute Pi(u) from Pi−1:

Pi(v) =
󰁞

x∈N(v)

{R ∪ {γ(v)}|R ∈ Pi−1(x) and γ(v) ∕∈ R}

This translates the computation of Pi(v) from Pi−1(v) to code:
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1 Bunt(G,i): // G being γ-colored
2 FOR ALL v in V:

3 Pi(v) = ∅
4 FOR ALL x in N(v): // runtime: deg(v)

5 FOR ALL R in Pi−1(x) with γ(v) ∕∈R: // runtime: |Pi−1(x)| · i
6 Pi(v) = Pi(v) ∪ {R ∪ {γ(v)}}

This function needs to be executed multiple times to fill the dp table and solve the
problem:

1 Rainbow(G,γ): // G being γ-colored
2 FOR ALL v in V:

3 P0(v) = {{γ(v)}}
4 FOR ALL i=1..k-1:

5 Bunt(G,i)

6 return
󰁖

v∈V Pk−1(v) ∕= ∅

For the runtime of ‘Bunt‘, we get

O(
󰁛

v∈V
deg(v) · |Pi−1(x)| · i) ≤ O(

󰁛

v∈V
deg(v)

󰀕
k

i

󰀖
i)

= O(

󰀕
k

i

󰀖
i
󰁛

v∈V
deg(v)) = O(

󰀕
k

i

󰀖
· i ·m)

For the entire algorithm:

O(|V |+
k−1󰁛

i=1

(

󰀕
k

i

󰀖
· i ·m) + |V |) ≤ O(|V |+

k󰁛

i=0

󰀕
k

i

󰀖
· k ·m)

= O(|V |+ 2kkm) = O(2kkm)

So, if k ≤ log n, then we have runtime O(mn log n)/O(poly(n)).

16.2 Long Path

We return to the long-path problem and want to solve it using our colorful paths solution
with a randomized algorithm. Remember: We want to determine whether some graph G
has a path of length B.

We set k := B + 1 and color G randomly with k colors and look for a (colorful) path
with k vertices using the above constructed polynomial (for log n path length) algorithm.
Considering that our coloring was random:

• If there is no path with k vertices in G, the algorithm will not find such a path, i.e.,
is always correct.

• If there is such a path with k vertices, the probability that in (G, γ) a colorful path
exists is

psuccess := Pr[∃ colorful path with k vertices]

≥ Pr[P is colorful] =
k!

kk
≥ e−k
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This is the basis for a Monte-Carlo algorithm. The expected number of tried until one
finds a colorful path (and thus a path with k vertices) is ≤ ek according to the laws of
geometric distributions.

Theorem: Let G be some graph with a path of length k − 1.

1. A random coloring with k colors creates a colorful graph of length k − 1 with
probability psuccess ≥ e−k.

2. With repeated random colorings, the expected value until one finds some colorful
path of length k − 1 is 1

psuccess
≤ ek.

Assume that such a path k does exist, if we do ⌈λek⌉ repetitions, we have the runtime
O(λek2kkm) = O(λ(2e)kkm). And the probability that the algorithm does not find said

path is ≤ (1− e−k)⌈λe
k⌉ ≤ (e−e−k

)⌈λe
k⌉ ≤ e−λ.

Theorem:

1. The algorithm has runtime O(λ(2e)kkm).

2. If the algorithm answers with ’Yes’, a path of length k − 1 exists.

3. If the graph has a path of length k − 1, the probability that the graph answers
with ’No’ is at most e−λ.

16.3 Remarks

∃ a randomized improvement, which runs in O(2kpoly(n)) instead of our O((2e)kpoly(n)).
Reducing the exponential base by e is a major improvement. But we do not discuss that
algorithm here.

If one intends to find the path of length B and not only know that such a path exists,
one needs to slightly adapt the algorithm. Basically, one does backtracking: For each
S ∈ Pi(v) one stores **one** path colored with S (i.e., the preceding element of Pi−1(x)
used to construct this S).

It is eqsy to see that this problem becomes easy in directed acyclic graphs. One can
simply assign weight −1 to all edges and compute shortest paths.

17 Network Flows

This problem has a lot of practical applications and, luckily, is just on the easier side of
the edge between P and NP.

Definition network (”Netzwerk”): A network is a tuple N = (V,A, c, s, t).

• (V,A) being a directed graph (without loops)

• s ∈ V being the source (”Quelle”)

• t ∈ V \{s} being the target (”Senke”)

• c : A → R+
0 being the capacity function (”Kapazitätsfunktion”)
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Definition flow (”Fluss”): Given a network N = (V,A, c, s, t), a flow N is a function
f : A → R which satisfies some conditions.

• feasability (”Zulässigkeit”): 0 ≤ f(e) ≤ c(e), ∀e ∈ A

• flow conservation (”Flusserhaltung”): ∀v ∈ V \{s, t}:

󰁛

u∈V,(u,v)∈A
f(u, v) =

󰁛

u∈V,(v,u)∈A
f(v, u)

The value (”Wert”) of some flow f is defined as

val(f) := netoutflow(s) :=
󰁛

u∈V,(s,u)∈A
f(s, u)−

󰁛

u∈V,(u,s)∈A
f(u, s)

Lemma: The netinflow of the target t is equal to the value of the flow:

netinflow(t) :=
󰁛

u∈V,(u,t)∈A
f(u, t)−

󰁛

u∈V,(t,u)∈A
f(t, u) = val(f)

Proof.

0 =
󰁛

(v,u)∈A
f(v, u)−

󰁛

(u,v)∈A
f(u, v)

=
󰁛

v∈V

󰀣
󰁛

u∈V,(v,u)∈A
f(v, u)−

󰁛

u∈V,(u,v)∈A
f(u, v)

󰀤

Whats in the brackets is 0 for v ∕∈ {s, t}.

=

󰀣
󰁛

u∈V,(s,u)∈A
f(s, u)−

󰁛

u∈V,(u,s)∈A
f(u, s)

󰀤
+

󰀣
󰁛

u∈V,(t,u)∈A
f(t, u)−

󰁛

u∈V,(u,t)∈A
f(u, t)

󰀤

= val(f)− netinflow(f)

⇒ val(f) = netinflow(f)

The problem we are trying to solve is this.

Definition MaxFlow Problem: Given a network, find the flow with the largest value,
i.e., the maximum flow.

Such a maximum flow always exists as will be seen.

17.1 Cuts

Definition: An s-t-cut for some network (V,A, c, s, t) is a partition (S, T ) of V (i.e.,
S ∪ T = V and S ∩ T = ∅) with s ∈ S and t ∈ T . The capacity of some s-t-cut (S, T )
is defined as

cap(S, T ) :=
󰁛

(u,w)∈(S×T )∩A
c(u,w)
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It is important to realize that we do not consider edges from T to S.

Lemma: Let f be a flow and (S, T ) a s-t-cut in some network. Then:

val(f) ≤ cap(S, T )

Proof. We define f(S, T ) :=
󰁓

(s,t)∈(S×T )∩A f(s, t) for some partition (S, T ) of V .
We claim

val(f) = f(S, T )− f(T, S) ≤ f(S, T ) ≤ cap(S, T )

Prove the three relations from right to left:

• f(S, T ) =
󰁓

(s,t)∈(S,T )∩A f(s, t) ≤
󰁓

(s,t)∈(S,T )∩A c(s, t) = cap(S, T )

• holds as f(T, S) ≥ 0 because all flow values are non-negative by definition

•

val(f) =
󰁛

u∈V,(s,u)∈A
f(s, u)−

󰁛

u∈V,(u,s)∈A
f(u, s)

=
󰁛

v∈S

󰀣
󰁛

u∈V,(v,u)∈A
f(v, u)−

󰁛

u∈V,(u,v)∈A
f(u, v)

󰀤

The content of the brackets is 0 for v ∕= s (mustn’t consider t here)

=
󰁛

(u,w)∈(S,T )∩A
f(u,w)−

󰁛

(u,w)∈(T×S)∩A
f(u,w)

= f(S, T )− f(T, S)

So if we find f and (S, T ) with cap(S, T ) = val(f), then f is a maximum flow. Hence,
(S, T ) is a simple proof/certificate for f being maximum. We will see now that such a
flow must always exist.

Theorem: For each network (V,A, c, s, t):

max
f flow

val(f) = min
(S,T ) s-t-cut

cap(S, T )

We prove the Maxflow-Mincut Theorem by considering an algorithm to compute the
maximum flow below, which then also provides us with a way to get a s-t-cut with the
capacity of the value of that flow. And from 3.8, we can then conclude the Maxflow-Mincut
Theorem. A direct proof is not provided.

We will only consider a special case in this proof, however the theorem also holds
generally. Specifically, we only consider integer flow values and do not allow edges in both
directions between two vertices in the network. It is important to understand that we can
not simply combine opposing edges into one edge. However, we can divide an edge by
adding a vertex. But that increases the number of vertices up to the count of the number
of directed possible edges. Our runtime is increased to O(m2U).

Notice that there are only finitely many s-t-cuts. Hence, the s-t-cut problem is finite
(other than the MaxFlow problem). This implies that a minimal cut always exists and
hence also a maximal flow.
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17.2 Augmenting Paths

We will use the concept of augmenting paths in our proof. The notion is to consider some
existing flow and find augmenting paths, along which we can improve the flow. This is
how a single node can be augmented to still validate flow conservation. (Feasability also
needs to hold afterwards of course.)

Figure 4: Node Augmentation Options

A flow augmentation (”Flussaugmentierung”) then is an undirected path from the
source to the target, which maintains flow conservation in each node (as described above)
and feasability for each edge.

Notice that one is only guaranteed to end up/terminate at some point and has a
maximum flow if the capacities are rational. Otherwise, one might infinitely long find and
adapt augmenting paths.

17.3 Residual Network

The residual network is to help find flow augmentations.

Definition residual network: Let N = (V,A, c, s, t) be a network without directed
edges. f is a flow in N . We define the residual network Nf := (V,Af , rf , s, t):

• e ∈ A, f(e) < c(e) ⇒ e is in Af with rf (e) := c(e)− f(e)

• e ∈ A, f(e) > 0 ⇒ eopp is in Af with rf (e
opp) := f(e)

• Af only contains edges such as in (1) or (2).

rf (e), e ∈ Af , is called residual capacity (”Restkapazität”) of e.

All residual capacities are strictly positive.

Theorem: Let N be some network without opposing edges.

•

some flow f is maximum

⇔
no directed s-t-path exists in the residual network Nf

• For each maximum flow f , some s-t-cut (S, T ) with val(f) = cap(S, T ) exists.

Proof. We only proof the first item as the second item is implied by ⇐ of the first item.

• We consider ⇒ now.

Indirect proof of implication: If in Nf some directed s-t-path exists ⇒ f can be
augmented ⇒ f is no maximum!
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Consider some directed s-t-path in Nf . Then, consider the smallest residual capacity
󰂃 := mini 󰂃i This 󰂃 must be > 0 because. Then, augment along f by 󰂃.

For the algorithm to follow, one then needs to update the network N and the residual
network Nf . We then get a new flow f ′ with val(f ′) = val(f) + 󰂃. Hence, f could
not have been a maximum flow.

• We consider ⇐ now.

We show: In Nf no directed s-t-path exists ⇒ ∃ s-t-cut (S, T ) with cap(S, T ) =
val(f) ⇒ f is maximum. We already know the latter implication from Lemma 3.8.
Hence, we only consider the first one. We define:

– S := vertices reachable in Nf from s

– T := V \S

As s is reachable from s: s ∈ S. And as t not reachable from s (no s-t-path
exists), t ∕∈ S, i.e., t ∈ T . Hence, (S, T ) is an s-t-cut. Then, we want to show
val(f) = f(S, T ) − f(T, S) = cap(S, T ). We have already shown the left equality
before. For the right equality, consider:

– edge e ∈ A from S to T .

We must have that f(e) = c(e) as otherwise the residual network would contain
some edge in the direction of e between its two vertices. Then, both vertices
of e would be in S and it would not be an edge between S and T . We get this
contradiction, which confirms f(e) = c(e).

– edge e′ ∈ A from T to S.

We must have f(e′) = 0 for the same reason as above. If it would not hold,
then the flow could be reduced and the residual network would contain and
edge directed from S to T with that value of f(e′). Then, both vertices of e′

would be in S, a contradiction to our assumption that e′ is from T to S.

Using thsoe two considerations, we get f(S, T ) as the sum of capacities, i.e., f(S, T ) =
cap(S, T ). And we get f(T, S) = 0 as all flow values must be 0. Hence, f(S, T ) −
f(T, S) = cap(S, T ) as required.

17.4 Algorithm

We now combine the tools and insights from above.

1 Ford -Fulkerson(V,A,c,s,t):

2 f = 0 // constant 0 flow

3 WHILE exists s-t-path P in Nf :

4 augment along path P

5 return f

We notice that if this algorithm terminates, we get a maximum flow. But we can not
guarantee that this algorithm terminates. And with capacities from R it is indeed possible
that this algorithm never terminates. (But some maximum flow still exists!) However,
with capacities from N0, flows and residual capacities also remain integers. Hence, during
each augmentation step, the flow value is improved by ≥ 1. Accordingly, also the results
are integers.
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Also, using the approach of this algorithm, we can also easily find the minimum s-t-cut.
Specifically by putting all reachable vertices in the final Nf in S and all others in T . But
notice that we can not easily do the conversion in the other direction, i.e., converting a
minimum s-t-cut to a specific maximum flow.

For N = (V,A, c, s, t) consider n := |V | and m := |A|. We now do the runtime analysis
of this algorithm.

• Consider c : A → N0 and U := maxe∈A c(e).

val(f) ≤ cap({s}, V \{s}) ≤ (n− 1)U

Hence, there are at most (n− 1)U augmentation steps.

• One augmentation step (finding an s-t-path in Nf , augmenting, updating Nf ) can be
done inO(m). Finding the path is trivial with only positive edge values. Augmenting
requires updating some number of edges. (The same for Nf with at most twice the
amount of edges).

Theorem Ford-Fulkerson algorithm: Let N = (V,A, s, c, t) some network with c : A →
N≤U
0 , U ∈ N without opposing edges (not necessary but simplifying assumption). Then,

an integer maximum flow exists. It can be computed in O(mnU).

This then also proves the Maxflow-Mincut Theorem for the case of networks with
integer-valued capacities and without opposing edges.

Now we will state some advances algorithms. We only provides runtimes and charac-
teristics.

Theorem capacity scaling, Dinitz-Gabow: If in some network all capacities are integers
and at most U , some maximum flow exists and can be computed in O(mn(1 + logU)).

Theorem dynamic trees, Sleator-Tarjan: The maximum flow of some network can be
computed in O(mn log n).

17.5 Applications

It was already mentioned in the introduction that network flows have countless applica-
tions. We only provide some examples here.

17.5.1 Bipartite Matchings

We map some bipartite graph G = (U ⊎W,E) to a network:

G = (U ⊎W,E) 󰀁→ NG = (U ⊎W ⊎ {s, t}, A, c, s, t)

• s ∕= t are new vertices

• A := {s}× U ∪ {(u,w) ∈ U ×W |{u,w} ∈ E} ∪W × {t}

• c ≡ 1
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Remember that we have shown the Ford-Fulkerson Theorem for integers. As NG is a
network with integer capacities ≤ U , an integer-valued maximum flow exists and can be
found in O(mnU) = O(mn) as U = 1.

We must elaborate two implications:

• If a matching M exists in G ⇒ a flow fM in NG with val(fM ) = |M | exists.
M being a maximum flow means that we can not get more connections from U
to W . Now set the flow all corresponding edges in NG to 1. And the vertices in
U/W incident to some edge with flow 1 should then be connected to s/t. We would
only get a flow with a higher flow value, if we can find some edge from U to W
without using some already used vertex. Reusing a vertex would not improve the
flow the input/output to that vertex is limited to 1 by the connection to s/t. But
such another edge can not exist by the definition of a maximum matching.

• If an integer flow f in NG exists ⇒ a matching M in G with |M | = val(f) exists.

Notice that each path from s to t, considering a path if all edges have flow 1, may
not branch. This is because 1 can not be divided as we only have integer values.
And as the in-/out-flow to each veretx in U/W is limited to 1 by the one connection
to s/t, also paths may not share vertices. Hence: the paths are disjunct and the
U -W connections can be used as part of a matching.

When remembering that for any flow with some integer value, an integer flow with the
same value exists, we get: Maximum matching in G ≃ maximum integer flow in NG.

Lemma: The cardinality of a maximum matching in the bipartite graph G has the same
value as the maximum flow in the network NG.

The construction of the matching then is quite simple given the maximum flow. All
directed edges in the flow which have value 1 and correspond to some edge in G are part
of the matching.

17.5.2 Edge-disjunct Paths

The problem: Given some graph G with two vertices u and v, u ∕= v, find a maximum set
of edge disjunct u-v-paths. We model the problem as a network:

G = (V,E), u, v ∈ V 󰀁→ N∗
G = (V,A, c, u, v)

• A := {(x, y), (y, x)|{x, y} ∈ E}

• c ≡ 1

We have opposing edges here. Despite not being proven, earlier statements on network
flows also hold if we have opposing edges.

In N∗
G we then compute an/the maximum integer flow f with flow values ∈ {0, 1}.

We consider then the graph which only has those edges with flow value 1. First, we
remove opposing edges (cycles of length 2) in that graph. This is called canceling. Second,
we find the actual paths by starting at u and walkign along unused edges until we reach
v. v is always reached as in-degree = out-degree. We mark al visited edges as used. We
can repeat this val(f) times to find val(f) edge-disjunct walks. We get paths by removing
cycles from those walks.
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At this point we can also prove Menger’s Theorem. Specifically, it follows directly from
the Maxflow-Mincut theorem

max
f flow

val(f) = min
s-t-cut

cap(S, T )

max#edge disjunct u-v-paths in G = min# edges whcih separate u and v

17.5.3 Vertex-disjunct Paths

Vertex disjunct paths follow from edge-disjunct paths. We only need to make a slight
modification to the constructed network N∗

G. Specifically, we replace each x ∈ V \{u, v}
with xin and xout where all input edges to x are redirected to xin and all output edges are
redirected to xout. Then, we also add the edge (xin, xout) = e with c(e) = 1.

17.5.4 Image Segmentation

We consider the problem: Given an image (pixels with color values), separate foreground
and background.

We consider an image as a set P of pixels (mostly arranged in a grid) with color
values (RGB, grayscale, b/w, ...) and neighboring relation, which states if two pixels are
neighbors. From that, we model the problem as a network:

• An image is a graph (P,E) with the color information x : P → colors.

• Each pixel is individually assessed and a likelihood of being in the foreground: α :
P → R+

0 - large αp ⇒ likely in foreground.

• Each pixel is individually assessed and a likelihood of being in the background:
β : P → R+

0 - large βp ⇒ likely in background.

• Likelihood of two pixels being both in the fore/background: γ : E → R+
0 - large

γe ⇒ likely in the same part (i.e. both foreground/background)

Those functions can be automatically generated, say using the brightness of a pixel for
foreground (and the ’darkness’ for background).

We define a quality function for some foreground/background separation (A,B) of P :

q(A,B) :=
󰁛

p∈A
αp +

󰁛

p∈B
βp −

󰁛

e∈E,|e∩A|=1

γe

With Q :=
󰁓

p∈P (αp + βp) we can rewrite q(A,B) to simplify the maximization for
our network flow.

q(A,B) = Q−
󰁛

p∈A
βp −

󰁛

p∈b
αp −

󰁛

e∈E,|e∩A|=1

γe

And as Q can be treated as a constant, we now want to minimize q′(A,B):

q′(A,B) :=
󰁛

p∈A
βp +

󰁛

p∈b
αp +

󰁛

e∈E,|e∩A|=1

γe

Realize that (A,B) is a cut. So we want to use the Maxflow-Mincut Theorem to find
the minimum cut. First we model the network. E ( ∕= 󰂓E) is the neighboring relation of
the image.

N := (P ∪ {s, t}, 󰂓E, c, s, t)
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• s ∕= t are new vertices, source and target in N

• ∀p ∈ P, e = (s, p) ∈ 󰂓E with c(e) = αp

• ∀p ∈ P, e = (p, t) ∈ 󰂓E with c(e) = βp

• ∀e = (p, p′) ∈ E: e′ = (p, p′) ∈ 󰂓E, e′′ = (p′, p) ∈ 󰂓E with c(e′) = c(e′′) = γe

Figure 5: Image Segmentation Network

In that network N , now consider some s-t-cut (S, T ) and A := S\{s} and B := T\{t}.
Those edges contribute to cap(S, T ):

• (s, p) with p ∈ B -
󰁓

p∈B αp

• (p, t) with p ∈ A -
󰁓

p∈A βp

• (p, p′) ∈ A×B -
󰁓

(p,p′)∈A×B,{p,p′}∈E γ(p,p′)

We notice: cap(S, T ) =
󰁓

p∈A βp+
󰁓αp

p∈B +
󰁓

e∈E,|e∩A|=1 γe = ∩(S, T ). I.e., q′(A,B) =
cap(S, T ).

We can find the (S, T ) to minimize cap(S, T ) (and hence also q′) by using Maxflow-
Mincut and then get (A,B) from that.

Finally, notice that this method not only works for 2D-images but also multidimen-
sional structures, i.e., multidimensional images, which are comprised of voxels instead of
pixels.

17.5.5 Flows and Convex Sets

Refer to the optional section.

18 Minimal Cut

Definition multigraph: Undirected, unweighted graph G = (V,E) without loops.
However, G might have multiple edges between two vertices.
Notice that we can represent this also be considered a ’normal’ weighted graph, where
the weight at each edge represents the number of edges.

As degree we count the number of incident edges, not the number of neighbors as one
could also do in a ’regular’ graph. The handshaking lemma still clearly holds.
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Definition edge cut (”Kantengraph”): Given some multigraph G = (V,E), an edge
cut is a set of edges C so that (V,E\C) is not connected.

The concept of edge cuts if linked to the concept of s-t-cuts. The latter consider the
two separate sets while edge cuts consider how to get those two separate cuts.

Definition µ(G): With µ(G) we denote the cardinality of the smallest edge gut in G.

µ(G) := min
C⊆E,(V,E\C) not connected

|C|

It is clear that µ(G) ≤ minv∈V deg(v), as we can always remove all incident edges of
some graph to make it unconnected.

We consider the MinCut problem: Given some multigraph G, identify the cardinality
of the minimum edge cut, i.e., µ(G).

18.1 Flow-Based

Just by the term MinCut we notice that we can apply the Maxflow-Mincut theorem. Given
some s and t we can already compute the smallest s-t-cut in O(mnU)/O(mn(1 + logU))
with Hopcroft-Karp. The latter becomes O(mn log n) as U ≤ n here.

We apply to known algorithm by fixing s and considering all t ∈ V \{s}. This works as
each cut is a s-t-cut for some t ∈ V \{s}. So, we must run our above O(mn log n) algorithm
n − 1 times and get return the smallest cut. This has runtime O((n − 1)nm log n) =
O(mn2 log n) = O(n4 log n).

18.2 Edge Contraction

Contracting an edge e = {u, v} ∈ E in some multigraph G = (V,E) means unioning the
two vertices u, v to a new vertex xu,v. All edges incident to u or v are now incident to xu,v,
i.e., the respective endpoint is replaced to be xu,v. All edges between u, v are removed.
The resulting graph is denoted as G/e.

With k := #edges between u, v: degG/exu,v = degG(u)+ degG(v)− 2k and |E(G/e)| =
|E(G)|− k.

∃ a natural bijection

E(G) without vertices between u, v → E(G/E)

Note that we actually can not store edges as sets of both endpoints because we can
not distinguish between multiple edges. Hence, we must actuall add an indicator, which
part of xu,v, i.e., u or v, that edge orginated from. We can add a bit to indicate that, for
instance.

As cuts have been defined as a set of edges, this induces a bijection:

cuts in G without e → all cuts in G/e

Lemma: G = (V,E) is a multigraph and e ∈ E.

µ(G/e) ≥ µ(G)

If G has a minimal cut C with e ∕∈ C: µ(G/e) = µ(G).
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18.3 Randomized Edge Contraction

Now we construct an algorithm based on what we have learned about the problem. Ideally,
we want to find some e so that µ remains unchanged. We do so by guessing.

1 Cut(G):

2 G’ = G

3 WHILE |V(G’)|>2:

4 e = random edge from G’, uniformly chosen

5 G’ = G/e

6 RETURN size of the unique cut in G’

Note that edge contractions and randomly uniformly choosing an edge both work in
O(n). So ‘Cut(G)‘ has runtime O(n2). But the result is not guaranteed to be correct.

Lemma: Let G = (V,E) be a multigraph and n = |V |. If e is randomly uniformly
chosen in E:

Pr[µ(G) = µ(G/e)] ≥ 1− 2

n

Proof. C :=minimal cut in G. k := |C| = µ(G).
We know ∀v ∈ V, degG(v) ≥ k, so:

|E| = 1

2

󰁛

v∈V
degG(v) ≥

kn

2

As e ∕∈ C ⇒ µ(G/e) = µ(G)

Pr[µ(G) = µ(G/e)] ≥ Pr[e ∕∈ C] = 1− |C|
|E| ≥ 1− k

kn
2

= 1− 2

n

p̂(G) := probability that Cut(G) returns the value µ(G)

p̂(n) := inf
G=(V,E),|V |=n

p̂(G)

Lemma: For all n ≥ 3:

p̂(n) ≥ (1− 2

n
) · p̂(n− 1)

Proof. Let G = (V,E), n := |V |. So that ‘Cut(G)‘ actually returns µ(G) two (random)
events must take place:

• E1 := event that µ(G) = µ(G/e)

• E2 := event that ‘Cut(G/e)‘ returns the value of µ(G/e)
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p̂(G) = Pr[E1 ∧ E2] = Pr[E1] · Pr[E2|E1] ≥ (1− 2

n
) · p̂(n− 1)

The last inequality holds as E2 is independent from E1. And tha lower bound for
Pr[E1] follows from an above lemma. As this holds for any multigraph G, we get

p̂(n) ≥ (1− 2

n
) · p̂(n− 1)

Lemma:

p̂(n) ≥ 2

n(n− 1)
=

1󰀃
n
2

󰀄

⇒ E [#iterations till correct result] ≤
󰀃
n
2

󰀄

Proof. With p̂(2) = 1:

p̂(n) ≥ n− 2

n

n− 3

n− 1

n− 4

n− 2
· · · 3

5

2

4

1

3
· p̂(2) = 2

n(n− 1)

Our algorithm nur runs ‘Cut(G)‘ for λ
󰀃
n
2

󰀄
times (λ > 0) and returns the smallest value

it ever got.

Theorem:

• The algorithm has runtime O(λn4).

• The smallest return value of some instance of ‘Cut(G)‘ equals µ(G) with probability
at least 1− e−λ.

Proof.

• O(λ
󰀃
n
2

󰀄
n2) = O(λn4)

• With 1 + x ≤ ex:

(1− p̂(n))λ(
n
1) ≤ (1− 1󰀃

n
2

󰀄)λ(
n
2) ≤ e−λ

With λ = lnn we have runtime O(n4 log n) with error probability ≤ 1
n . We will make

this approach worth it, i.e., reduce the runtime with bootstrapping.
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18.4 Bootstrapping

Notice that the probability p̂(n) of getting a correct result is reliant on late steps. We had
p̂(n) ≥ n−2

n
n−3
n−1

n−4
n−2 · · · 3

5
2
4
1
3 · p̂(2) = 2

n(n−1) , where the factors come from the individual
iterations of the algorithm from left to right. When we do the last step better, we will get
a 3x higher success probability. When we do the second to last step better, we will get a
2x increase. And so on.

One idea is to use some deterministic, well known algorithm to replace some number
of last iterations with an O(z(t)) computation to increase the probability significantly.

1 Cut1(G):

2 WHILE |V (G) > t|:
3 e = random edge from G, uniformly chosen

4 G = G/e

5 return size of the unique smallest cut in G

This changes the runtime to O(n(n− t) + z(t)), where z(t) is used some algorithm we
use for the last steps. We define p∗(t) to be some lower bound for the success probability.

Instead of choosing some expensive deterministic algorithm, we may also ’reuse’ the
probabilistic algorithm from the earlier section we are just now improving. That algorithm
(with λ = 1) has runtime z(t) = O(t4) and success probability ≥ 1 − e−1. We can an
updated formula for p̂t(n):

p̂t(n) ≥
n− 2

n

n− 3

n− 1

n− 4

n− 2
· · · t+ 1

t+ 3

t

t+ 2

t− 1

t+ 1
p̂t(t) ≥

t(t− 1)

n(n− 1)

e− 1

e

The inverse of that is the expected value for the number of iterations until we get the
correct result. The runtime for one iteration is O(n(n− t) + z(t)). We can multiply that
with λ ·#expected number of iterations to get a success probability of ≥ 1−e−λ as before.
The runtime becomes:

λ
n(n− 1)

t(t− 1)
O(n(n− t) + t4) = O(λ(

n4

t2
+ n2t2))

We can now choose t so that this terms becomes minimal. We choose t =
√
n and get

O(λn3) as the new runtime.
One mustn’t stop here but can do the same thing again, i.e., do bootstrapping again

to further improve the runtime. When considering the limit of those improvements, one
gets O(n2 polylog(n)) (Karger & Stein).

19 Smallest Enclosing Disk

The smallest enclosing disk problem is part of a set of problems, which try to fit some set
to a given form. This has applications in object/collision simulation, precision metrics in
manufacturing from data/measure points, etc.

The enclosed disk problem ias associated with the enclosed ring, enclosed ellipse, en-
closing lines, ... But the problems of enclosing triangle, enclosing rectangle, ... are quite
different. The difference boils down to that the below algorithm is based on the fact that
a circle is defined by at most 3 points. Meanwhile, a triangle may be defined an arbitrarily
large amount of points.
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Definition Smallest Enclosing Disk Problem: Given a finite set of points P ⊆ R2,
determine the circle with the smallest radius, which encloses P .

Definition circle/disk: We have radius r and center z. The circle is C = {p ∈ R2||zp| =
r}, |zp| being the distance of z and p.
C• is the closed disk bordered by C: C• = {p ∈ R2||zp| ≤ r}.
C encloses P , because P ⊂ C•.

Lemma: For each finite set P ⊆ R2, a unique smallest enclosing circle C(P ) exists.

Proof. Existence was not covered. Uniqueness can be proven by contradiction. Assume
there are two different smallest circles: C1 and C2, both with radius r and different centers
z1 ∕= z2. It must hold that P ⊆ C•

1 ∩ C•
2 .

We now construct a new circle. Let it have the center z = 1
2(z1 + z2) (the middle

between z1 and z2). Its radius r̂ is the distance from z to the intersection point of C1 and

C2. Basic trigonometry tells us that r̂ =

󰁵
r2 −

󰀓
|z1z2|

2

󰀔2
.

Notice that P ⊆ C•
1 ∩ C•

2 ⊆ C•. So as r̂ < r, C1 and C2 can not be smallest enclosing
circles, which is a contradiction.

Lemma: For each set of points P ⊆ R2, |P | ≥ 3, a subset Q ⊆ P exists so that |Q| = 3
and C(Q) = C(P ).

Proof. We define that the set B contains all points which are on the border of C•, i.e., in
C.

If g is an arbirary line through the center of C, it can not be that ll points of P are
strictly on one side of g. This holds as we could move the center of C orthogonally to g
away from the side without points, and then slightly decrease the radius. We can do so in
a way that still all points are contained, which contradicts the opposite statement.

From this follows that |B| ≥ 2 and that if |B| ≤ 3, C is given by C(B). If |B| ≥ 4,
we choose two arbitrary points p, q from B which do not follow directly after each other
when walking along C.

• If they are on one line, C is defined by p and q, which proves the lemma.

• If they are not, we can remove an arbitrary r ∈ B, which is on the shorter line
segment defined by p and q. B\{r} then still valides our observation regarding some
line g through the center and the lemma follows by induction.

We define our first native algorithm from those information.

1 CompleteEnumeration(P)

2 FOR ALL Q ∈
󰀃
P
3

󰀄
:

3 determine C(Q)

4 IF P ⊆ C•(Q) :
5 RETURN C(Q)
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For correctness: At least one value is returned as three points exist so that they form
an enclosing circle. If we return a circle, we can not find another circle with smaller radius
later. That is because if we would find a smaller circle, that smaller circle would have
to contain the three points of the previous circle, which could only be covered with that
larger circle. Hence, this smaller radius circle would have to contain that larger circle -
being a contradiction.

However, we can easily improve this. Notice that all circles C(Q) we consider have
some radius. And only the circle with the largest radius can be the enclosing circle. All
other cricles could not contain the three points that construct the larger circle. Hence,
we actually only need to remember the radius. Thsi improves the runtime from O(n4) to
O(n3).

1 CompleteEnumerationSmart(P):

2 r = 0

3 FOR ALL Q ∈
󰀃
P
3

󰀄
:

4 determine C(Q)
5 IF radius(C(Q)) > r:
6 C∗ = C(Q)
7 r = radius(C(Q))
8 RETURN C∗

Now we can turn to randomize this algorithm by randomly picking Q. This initial
algorithm ’only’ provides O(n4) (which is a step back so far) as the success probability for
one Q is ≥ 1

(n3)
/the failure probability is ≤

󰀃
n
3

󰀄
.

1 RandomizedPrimitiveVersion(P):

2 REPEAT FOREVER:

3 choose Q ⊆ P with |Q| = 3, uniformly randomly

4 determine C(Q)
5 IF P ⊆ C•(Q):
6 RETURN C(Q)

While running this algorithm we learn about points which lie outside of C(Q). Our
intuition tells us that those points are important while we can neglect points inside C(Q).
That intuition is only right in the sense that points outside are ’more important’ but the
ones on the insight can not be forgotten.

This algorithm makes use of this notion by increasing the weight of points outside of
C(Q). The remaining parts of the algorithm will get clear later.

1 RandomizedCleverVersion(P):

2 P ′ = P // P’ being a multiset , i.e., P’ can contain elements

multiple times

3 REPEAT FOREVER:

4 choose Q ⊆ P ′ with |Q| = 11, uniformly randomly

5 determine C(Q)
6 IF P ⊆ C(Q):
7 RETURN C(Q)
8 ELSE:

9 double all points in P ′ outside of C(Q)

We must be able to choose Q in O(n) with n := |P |. Specifically, we must choose from
a set of weighted options.
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Lemma: n1, ..., nt are natural numbers and N :=
󰁓t

i=1 ni. We generate X ∈ {1, ..., t}
randomly.

1 k = UniformInt (1,N)

2 x = 1

3 WHILE \sum_{i=1}^{x}n_{i}<k:

4 x = x+1

5 RETURN x

Then Pr[X = i] = ni
N for all i = 1, ..., t

Proof. The probability follows from the fact that x = i is outputted exactly for k ∈
{1 +

󰁓k−1
i=1 ni, ...,

󰁓x
i=1 ni}, i.e., for ni of all possible N values of k.

We now consider the choice of |Q| = 11 instead of = 3. We will see that any value
larger than 11 works, but choosing the smallest value keeps the (quite expensive) constant
work low. The reason lies in the expected number of iterations until P ⊆ C•(Q).

Notice that some B∗ ⊆ P with C(B∗) = C(P ) and |B∗| ≤ 3 must exists. Based on
that definition of B∗ it must hold

B∗ ⊆ Q ⊆ P ⇒ C(Q) = C(P )

Some additional observations:

• |P ′| grows rapidly
As long as P ⊆ C•(Q) does not hold, some element of B∗ must lie outside of C(Q).
This means that some point in B∗ must have been doubled at least k

3 times and,

hence, have multiplicity ≥ 2
k
3 .

• |P ′| does not grow too rapidly

Below we will show that we expect (emphasis on probabilistic here) P ′ to only

increases by a factor of (1 + 3
12) =

4
5 in each iteration. So, |P ′| ≤ 5

4

k
n.

• As 5
4 ≤ 3

√
2, those bounds are to cross at some points and we expect (again, only

probabilistically) the algorithm to terminate hence. This is no formal reasoning
(yet). Now follows the formal consideration.

Lemma: r,N ∈ N, r ≤ N , and P ′ ⊆ R2 be a multiset with |P ′| = N . If R is uniformly

randomly chosen from
󰀃
P ′

r

󰀄
, we get:

E[|P ′\C•(R)|] ≤ 3
N − r

r + 1
≤ 3

N

r + 1

Proof. p ∈ P ′, R,Q ⊆ P ′.

out(p,R) :=

󰀫
1, p ∕∈ C•(R)

0, otherwise

ess(p,Q) :=

󰀫
1, C(Q\{p}) ∕= C(Q)

0, otherwise
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•
󰁓

p∈P ′\R out(p,R) = |P ′\C•(R)|

•
󰁓

p∈Q ess(p,Q) ≤

• out(p,R) = 1 ⇔ ess(p,R ∪ {p}) = 1

We want to compute E [|P ′\C•(R)|].

E[|P ′\C•(R)|] = 1
󰀃
N
r

󰀄
󰁛

R∈(P
′

r )

󰁛

s∈P ′\R
out(s,R)

=
1

󰀃
N
r

󰀄
󰁛

R∈(P
′

r )

󰁛

s∈P ′\R
ess(s,R ∪ {s})

=
1

󰀃
N
r

󰀄
󰁛

Q∈( P ′
r+1)

󰁛

p∈Q
ess(p,Q)

≤ 1
󰀃
N
r

󰀄
󰁛

Q∈( P ′
r+1)

3

= 3 ·
󰀃

N
r+1

󰀄
󰀃
N
r

󰀄

= 3
N − r

r + 1

We can now write 3 N
r+1 ≤ 3 N

r+1 +N = (1 + 3
r+1)N

Actually, we are interested not in the increase but actually in the size of |P ′| itself. Let
T ∈ N ∪ {∞} be the count of iterations of the algorithm and Xk := |P ′| after min{T, k}
iterations.

E[Xk] =

∞󰁛

t=0

E[Xk|Xk−1 = t] · Pr[Xk−1 = t]

≤
∞󰁛

t=0

(1 +
3

r + 1
)t · Pr[Xk−1 = t] (this uses the lemma result)

= (1 +
3

r + 1
)

∞󰁛

t=0

t · Pr[Xk−1 = t]

=

󰀕
1 +

3

r + 1

󰀖
· E[Xk−1]

With X0 ≡ n we can use induction and get E [Xk] ≤ (1 + 3
r+1)

k · n.
From that follows the factor (1 + 3

12) of the above bound with r = 11 as used in the
algorithm. But still, the choice of r = 11 remains mysterious...

We have stated that for T ≥ k : Xk ≥ 3
√
2
k
.

E[Xk] = E[Xk|T ≥ k] · Pr[T ≥ k] + E[Xk|T < k] · Pr[T < k] ≥ 2
k
3 · Pr[T ≥ k]

This works as removing one summand just decreases the bound (and E [Xk|T < k] = 0
by assumption after all).
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When combining those two bounds, we get

3
√
2
k · Pr[T ≥ k] ≤ E[Xk] ≤ (

5

4
)k · n

⇔ Pr[T ≥ k] ≤ (
5

4 3
√
2
)k · n ≤ 0.993kn

for k ≥ − log0.993 n we then even have ≤ 1

This justified the minimum of r = 11. If r would have been chosen larger, then the
factor of the exponential term would have been ≥ 1, which means that we would have
no useful upper bound here. But that bound is required to give some useful expected
runtime.

Theorem: The algorithm computes the smallest enclosing disc with the expected run-
time O(n log n).

Proof. We choose k0 := ⌈− log0.993 n⌉. For the expected number of iterations we have:

E[T ] =
󰁛

k≥1

Pr[T ≥ k] ≤
k0󰁛

k=1

1 +
󰁛

k≥k0

0.993kn

=

k0󰁛

k=1

1 +
󰁛

k′≥0

0.993k
′ · 0.993k0+1n = k0 +O(1) = O(log n)

Because there are O(n) iterations, we get our runtime.

The algorithm introduced above is based on an idea from Clarkson (’95) and works
for the smallest enclosing sphere (or ellipse) in any dimension with respectively different
constants compared to 11. Those constants usually grow exponentially with the dimension.
But within some dimension we always have O(n log n).

Also, there are simpler randomized and also deterministic algorithms (with linear run-
time). But those are then fixed for one dimension.

19.1 Sampling Lemma

Above we discussed E [|P ′\C•(R)|] ≤ 3N−r
r+1 ≤ 3 N

r+1 . That lemma can be generalized and
is then called sampling lemma.

Definition: Given some finite set S, n := |S| and φ being an arbitrary function on 2S

to some arbitrary codomain. We define:

V (R) = Vφ(R) := {s ∈ S|φ(R ∪ {s}) ∕= φ(R)}
X(R) = Xφ(R) := {s ∈ S|φ(R\{s}) ∕= φ(R)}

Elements in V (R) are called ”Verletzer” of R. Elements in X(R) are called ”extrem” in
R.

We see that s ∈ V (R) ⇔ s ∈ X(R ∪ {s}).
The sampling lemma relates the expected amount of ”Verletzern” to the expected

amount of ”extrem” elements.
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Lemma Sampling Lemma: Let k ∈ N, 0 ≤ k ≤ n. R is a k-element subset of S,
uniformly randomly from

󰀃
S
k

󰀄
. We set vk := E[|V (R)|] and xk := E[|X(R)|].

Then, for r ∈ N, 0 ≤ r ≤ n:

vr
n− r

=
xr+1

r + 1

Proof. G = (A ⊎B,E) bipartite: average degree in A · |A| = |E|.
First, we defien a bipartite graph.

• vertices:
󰀃
S
r

󰀄
⊎
󰀃

S
r+1

󰀄

• edges: {R,R ∪ {s}}, R ∈
󰀃
S
r

󰀄
, s ”Verletzer” of R

Degree of R ∈
󰀃
S
r

󰀄
is |V (R)|. Number of edges is

󰀃
n
r

󰀄
vr.

The edges can just as well be described as {Q\{s}, Q} with Q ∈
󰀃

S
r+1

󰀄
and s being

”extrem” in Q. The degree of Q is accordingly |X(Q)| and the number of edges are󰀃
S

r+1

󰀄
xr+1.

We have effectively shown that
󰀃
n
r

󰀄
vr =

󰀃
n

r+1

󰀄
xr from which follows the claim.

Corollary:
If we choose r elements R from a set A with n elements randomly, the expected rank of
the minimum of R in A is exactly n−r

r+1 + 1 = n+1
r+1 .

If we choose r points from a set P of n points in a plane randomly, the expected number
of points of P outside of C(R) is at most 3n−r

r+1 .

20 Convex Hull

The convex hull (defined below) can be computed in various dimensions. We will consider
dimension d = 2 here but d ∈ N could be arbitrary.

Definition line segment: For v1, v1 ∈ Rd

v0v1 := {(1− λ)v0 + λv1|λ ∈ R, 0 ≤ λ ≤ 1}

is the line segment, which connects v0 and v1.

Definition convexity/convex sets: Some set C ⊆ Rd is called convex if ∀v0, v1 ∈ C :
v0v1 ⊆ C.

Definition convex hull: The convex hull conv(S) of some set S ⊆ Rd is the cut of all
convex sets, which contain S.

conv(s) :=
󰁟

S⊆C⊆Rd,C convex

C

The convex hull is always a convex set itself because the cut of two convex sets is also
a convex set. Intuitively, the convex hull can also be understood as the smallest convex
set which contains S.
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Definition Convex Hull Problem: Given some finite set of points P ⊆ R2, determine
the convex hull of P .

Generally, some convex set can not stored/characterized with a finite amount of data,
it is an infinite set after all.

However, for some finite set of points P in some plane, the convex hull is defined
by some polygon, the edge of conv(P ), whose corners are edges from P . So, when we
discuss computing conv(S), we mean to determine a sequence of the corners of the polygon
beginning at some q0 and considering other edges counter-clockwise along the polygon.

(q0, q1, ..., qh−1), h ≤ n

Q := {q0, q1, ..., qh−1} ⊆ P then is the smallest subset of P with conv(Q) = conv(P ).
This allows us to rephrase the problem.

Definition Convex Hull Problem, rephrased: Given some finite set of points P ⊆ R2,
determine the corners of the enclosing polygon conv(P ) in counter-clockwise order.

We will now consider two different algorithms for this problem.
For those algorithms, we will at the beginning usually make the assumptions that all

points in S are in ’general location’ (”allgemeiner Lage”). This means that no three points
are on the same line and that no two points have the same x coordinate.

20.1 Algorithm: Jarvis Wrap

We start by assuming that all points are in general location.

Definition boundary edge: A pair qr ∈ P 2, q ∕= r, is called boundary edge of P if all
points in P\{q, r} are left from qr/the directed edge from q to r.

Lemma:
Let p = (px, py), q = (qx, qy), and r = (rx, ry) be points in R2. We have q ∕= r and p
being left from (the directed) qr if and only if

det (p, q, r) = |
px py 1
qx qy 1
rx ry 1

| = |qx − px qy − py
rx − px ry − py 1

| > 0

That is equivalent to

(qx − px)(ry − py) > (qy − py)(rx − px)

Proof. No proof is given. But this follows from what has been learned about the determi-
nant in Linear Algebra.

Intuitively, the determinant computes the area spanned by the three vectors p, q, r.
The sign of the determinant/the area depens on the orientation, i.e., order of the provided
vectors. Hence, for a certain order, we get a positive result if the p is to the left of qr.

Specifically, 1
2 |det (p, q, r)| is the area of the triangle pqr, where the sign determines

the order of the corners in which we traverse the edges.
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Lemma:
(q0, q1, ..., qh−1) is the corner sequence of the conv(P ) enclosing polygon in counter-
clockwise order if and only if all pairs (qi−1, qi), i = 1, 2, ..., h( mod h) are boundary
edges of P .

From the above, we can construct the first native algorithm. We iterate over all n(n−1)
pairs qr and check whether it is a boundary edge by checking for all remaining n−2 points
p in P\{q, r}, whether p is to the left of qr. By doing so, we can find all boundary edges
in O(n3), which we then only need to order, which can be definitely done in O(n2).

But that algorithm is most basic and we can do better. So, let q0 := point with smallest x-coordinate.
q0 then certainly is a corner of the convex hull.

1 FindNext(q):

2 choose p0 ∈ P{q} randomly

3 qnext = p0
4 FOR ALL p ∈ P\{q, p0}:
5 IF p right of qnext:
6 qnext = p
7 return qnext

This works because for some q ∈ P , we can define a relation on the remaining points
in P , which is a total order relation if q is a boundary edge. Given such q ∈ P we define

p1 ≺q p2 :⇔ p1 right of qp2

From q begin a corner of the convex hull we get that some line exists, which separates
q and P\{q}. It implies that the order is not cyclic but actually a total order so that some
minimum exists.

Lemma: If q is a corner of the convex hull of P , the relation ≺q is a total order on
P\{q}. For the minimum pmin of that order, qpmin is a boundary edge.

So, we can use the above ‘FindNext()‘ function to define our algorithm.

1 JarvinWrap(P):

2 h = 0

3 pnow = point in P with smallest x-coordinate

4 REPEAT:

5 qh = pnow
6 pnow = FindNext(qh)
7 h = h+1

8 UNTIL pnow = q0
9 RETURN (q0,q1 ,...,qh−1)

Theorem: For a set P of n points in general location in R2, the JarvisWrap algorithm
computes the convex hull in O(nh) with h being the number of corners of the convex
hull of P .

With h ≤ n we get O(n2), which is better than the naive O(n3). If h = O(1), which
is the case if we know the number of edges in advance, then we have O(n). This thought
process is quite interesting as for different geometric forms, i.e., points being randomly
inside such a form, we have a certain number of expected points.

• square: #edges = O(log n)
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• circle: #edges = O( 3
√
n)

Now we discuss some limitations (such as general location) we introduced earlier.

• unique x-coordinates

The purpose of this was to be able to easily choose some initial vertex for our
algorithm to start. But we can also choose q0 as the smallest point in regard to the
lexicographic order (y-coordinate as second part) to allow duplicate x-coordinates.

• no three points on one line

The purpose of this was so that we can easily test for ”p to the right of qqnext”. But
we can also replace that relation with the smallest in the lexicographic order with
|qp| > |qqnext| being the second component.

• we considered a set of unique points

If we get the input points as an array, this may not be guaranteed. One option
is to remove duplicates in the beginning in Θ(n log n), which would increase the
linear component. Instead it is sufficient to (a) in ‘FindNext()‘ test p0 ∕= q when
choosing p0 and (b) to do the comparison pnow = 10 in ‘JarvisWrap()‘ based on the
lexicographic order/actual points instead of indices (or just remove duplicates only
of q0 only in the beginning).

Furthermore, this algorithm has numeric difficulties. To determine whether some point
if left of a line, we compute (qx− px)(ry − py) > (qy − py)(rx− px). With floating pointers
this may not be precise. Just imprecise results are unfortunate but not that bad. What
is definitely bad if computational errors lead to wrong results or an infinite loop in the
algorithm. To solve those instabilities we can use libraries which offer precise datatypes
for the operations we require. While that works here, it definitely reduces efficiency.

20.2 Algorithm: Local Improvements

We now consider a second algorithm and start by considering S as a set of points in general
location again.

When remembering the definition of a boundary edge, we can check local convexity of
some polygon (q0, q1, ..., qh−1) by checking

∀i, 1 ≤ i ≤ h, qi+1 left from qi−1qi, indices i mod h

While this checks local convexity, there are some deficits in regard to global convexity:

• {q0, ..., qh−1} must not be a subset of P .

• The polygon must not contain all points of P .

• The polygon may cross itself (violating global convexity).

Observe that if those three deficits would not hold and we would have local convexity,
then we would also have global convexity. The idea for our algorithm is hence to start
with some polygon which not necessarily satisfies local convexity but avoids the three
mentioned deficits. Then we we do local improvements so that in the end local convexity
holds without introducing any defect on the way. In the end, we then have global convexity.

Given (q0, ..., qk−1), a local improvement means that if q1 is left from qi−1qi+1 (indices
mod k), we remove qi from the sequence.
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We get the initial polygon by sorting P by the x-coordinate in increasing order. From
that we get the point order (p1, ..., pn) and consider the polygon (p1, p2, ..., pn−1, pn, pn−1, ..., p3, p2).
This polygon contains only points of P and does not cross itself. It avoids all defects.

For correctness of the algorithm we now must consider some invariants, which show
that we successfully avoid the defects during local improvement steps. First notice that
p1 and pn may never be removed from the polygon as they have minimum and maximum
x-coordinate.

• The partial polygon trail (p1, ..., pn) is x-monotone (left-to-right) and has no point
in P below it.

A local improvement step may only remove elements, which can not lead to a viola-
tion of x monotony.

A local improvement step may only push the boundary to the right, which means
bottom here as we consider left-to-right monotony. If all points have been above
before, then they must also be above afterwards.

• The partial polygon trail (pn, ..., p1) is x-monotone (right-to-left) and has no point
in P above it.

A local improvement step may only remove elements, which can not lead to a viola-
tion of x monotony.

A local improvement step may only push the boundary to the right, which means
top here as we consider right-to-left monotony. If all points have been below before,
then they must also be below afterwards.

• The partial polygon trail (p1, ..., pn) is never above the partial polygon trail (pn, ..., p1).

As reasoned for the individual trails, (p1, ..., pn) may only move down while (pn, ..., p1)
may only move up. So if the claim held before it will also hold afterwards

These invariants imply that the polygon can never cross itself and contains all points.
We also easily see that the points of the polygon may only be some subset of P .

So doing local improvements always avoids the above mentioned defects. If we manage
to do local improvements until the polygon is locally convex, we then must also have the
globally convex solution polygon.

The above already fully specifies a working algorithm. So far it is non-deterministic as
we did not specify an order for the local improvements. But to implement the algorithm
we have to do so now.

1 LocalRepair(p1, p2, ..., pn): // input is sorted by x-coordinate

2 q0 = p1;
3 h = 0;

4
5 FOR i=2,...,n: // this improves the lower partial polygon trail

6 WHILE h > 0 AND qh left from qh−1pi:
7 h = h-1

8 h = h+1

9 qh = pi
10
11 h’ = h

12
13 FOR i=n-1,...,1: // this improves the upper partial polygon trail

14 WHILE h > h′ AND qh left from qh−1pi
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15 h = h-1

16 h = h+1

17 qh = pi
18
19 RETURN (q0,q1 ,...qh−1)

We now do the runtime analysis. Notice that the fact that we introduced some specific
order for the local improvement steps does not matter. Our initial polygon has 2(n − 1)
corners. Our solution polygon has h corners. Each local improvement removes one corner.
Hence, we must remove 2(n− 1)− h = O(n) times.

So there are O(n) successful tests of ”qh left from qh−1pi” and for each pi two failing
tests (one on the upper partial polygon trail and one on the lower partial polygon trail).
Hence, each while block has a runtime of O(n) accordd all for iterations. So the total
algorithm with some sorted input has runtime O(n). And as sorting takes O(n log n) in
the beginning, we have a total runtime of O(n log n).

Theorem: Given s sequence of points p1, p2, ..., pn sorted by their x-coordinate in general
location in R2, the ‘LocalRepair‘ algorithm compute the convex hull of {p1, p2, ..., pn} in
O(n).

Now some final considerations.

• We again assumed in the beginning that all points of S are in general location. But
that is not necessary.

– Instead of prohibiting three points to be on the same line we simply consider the
lexicographic order of points P (the y-coordinate being the second component)
and remove duplicates from the order.

That this works can be understood when considering that we can slightly rotate
the whole set of points. We can do that so slightly that no order is changed
and the convex hull then clearly is identical (except for being rotated). And the
resulting order after this slight rotation is exactly the order of the lexicographic
order.

– Instead of prohibiting any three points to be on one line we can adapt the test
”qh left from qh−1pi”. We would then also remove qh if it is not left from but
also on the line.

• This algorithm is numerically more robust than JarvisWrap. We might still have
some slight errors (wrongly removing or taking some point which is very close to
the actual boundary) caused by numerical inaccuracies. However, this algorithm
will never run in an infinite loop or return a fundamentally wrong result because its
runtime is bound by iterating over the points of the set P .

• The connections crated during local improvements result in a triangulation of the
points in the end. With local improvements upon this triangulation one can also get
a good triangulation (Delaunay Triangulation). This was only mentioned but not
further discussed.

• We have said that the LocalRepair algorithm is optimal. Anyway, there are algo-
rithms, which offer slightly better bounds in some cases but still have O(n log n) for
the worst case.

– Some O(n log h) algorithm exists.
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– If the points for S are chosen from a square or circle, some algorithm with
expected runtime O(n) exists.

20.3 Lower Bound

We can quite easily show a lower bound for the runtime of the convex hull problem by
using a reduction.

Consider the sequence (x1, x2, ..., xn) of numbers in R. We set pi = (xi, x
2
i ), i =

1, 2, ..., n (vertical projection of the x-axis on to the unit parabola in R2). From the
sequence of corners of the convex hull of P := {p1, p2, ..., pn} we could, in linear time, also
get the order of xi in increasing order.

If we can solve convex hull in t(n), we can sort in t(n) + O(n). And we we have the
lower bound O(n log n) for sorting, we can compute the convex hull in at most O(n log n).
This shows that the local improvements algorithm has optimal runtime.
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Part IV

Optional

In the lecture, some additional topics were discussed, which are not relevant for examina-
tion and, hence, not covered here. The topics/algorithms were:

• Convex Sets

• Continuous Matching

• Expert Algorithm
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