
Combinational Logic

Basic Building Blocks
Transistors

Metal (conductor), Oxide (insulator), Semiconductor
n-type transistor: con-
nection source↔drain ⇔
high voltage

good at pulling down
(eletrons don’t flow well)

p-type transistor: connec-
tion source↔drain ⇔ low
voltage

good at pulling up (elec-
trons flow well)

p-/n-type: opposite high voltage: 0.3V-3V
modern system: n-&p-type → C(omplementary)MOS

Logic Gates

NOT-gate/inverter NAND-gate

AND-gate/Y = A · B = AB: NAND + inverter
(not impossible: p pull up and n pull down - otherwise
4) — XOR: 1↔odd input 1

Latency & Power Consumption
Transistors in serial slower than transistors in parallel
(pseudo nMOS to alleviate latency)
dynamic power: charge capacitors on signal change
(C · V 2 · f , capacitence, voltage, frequency) - static
power: loss due to drain ((V · Ileakage)) — energy =
power · time

Boolean Algebra

functional specification of logic gates
NOT:A, AND:A ·B, OR:A+B - ring axioms hold
duality: switching 0/1 +/· → still valid
idempotent law:X + X = X/X · X = X , involu-
tion law: (x) = X , law of complementarity: x + x =
1/x·x = 0, commutative law: x+y = y+x/x·y = y·x
DeMorgan’s law: (X + Y + ...) = XY .../(XY...) =

X + Z + ...
boolean algebra to simplify: better implementation
complement, literal: input or its complement, implicant:
product of literals, minterm: product that includes all
inputs, maxterm: sum that includes all inputs

standardize function representations
truth table of function unique, equations not
S(um)O(f)P(roducts)/D(isjunct)N(ormal)F(orm): sum
of minterms with value 1 - may only specify rows:
m3 +m4 + ... =

󰁓
m(3, 4, ...)

P(roduct)(O)fS(ums)/C(onjunctive)N(ormal)F(orm):
product of maxterms with value 0 - may only specify
rows: M0 ·M1 · ... =

󰁔
M(0, 1, ...)

conversion: x rows
󰁓

m(1, 2, ...) =
󰁔

M(..., x−1, x)
inversion:

󰁓
m(1, ...) =

󰁓
m(..., x) =

󰁔
M(1, ...)

logic simplification/minimization
trial & error - goal: reduce number of gates and inputs,
number of transistors
use Unity Theorem: F = AB+AB = A(B+B) = A
subsets of ON set w single varying variable → eliminate
(”don’t care”, denoted X)

logic completeness
Anything implemented with {AND,OR,NOT}
NAND and NOR also logically complete

Combinational Logic
decoder

input pattern detector, n → 2n signals, input combina-
tion ↔ one output
implement logic functions gate-level implementation

multiplexer
select one input as output based on log2 N controls (out-
put always connected), as lookup tables (LUT) for logic

full adder
add two bits with carry, Si = A ⊕ B ⊕ C,
carryi+1 = aibi + ai · carryi + b · carryi

more efficient/specialized carry lookahead adder exists
programmable logic array

comparator

arithmetic logic unit

tri-state buffer

Sequential Logic Design

memory hierarchy: Latches/Flip-Flops, SRAM, DRAM
Latches: level-triggered (capture data during entire high
of write-enable), Flip-Flop: edge-triggered, captures
only on rising (clock) edge

storing information
Cross-coupled inverter, needs control mechanism

R-S Latch

Q data & S,R control - S = 1 = R quiescent (idle),
S = 0, R = 1 set, S = 1, R = 0 reset, R = 0 = S
invalid (osciallation, eventually settle unpredictably)

Gated D Latch

Register with Gated D Latches

Memory with Gated D Latch Registers

unique locations in memory, read/written with unique
address, x locations have log2 x-bit addresses, address-
ability: bits in each location, address space, space of
unique locations
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memory boolean logic: 2N address space, M -bit ad-
dressability is N → M function

D Flip-Flop

Finite State Machines
State & Clock

state: snapshot, state diagram: models state machine
(state change: transitions)
asynchronous: transitions at any time, synchronous:
transitions when clock signals, synchronous easier,
asynchronous higher efficiency
clock: signal alternating 1/0, clock cycle:
rising-rising, system change only at rising edge

FSM
discrete-time model, state diagram: all states & transi-
tions — requirements: finite inputs, outputs, states, ex-
plicit state transitions, output values — three parts: next
state logic (combinational), state register (sequential),
output logic (combinational)

types
Moore FSM: output depends on current state
Mealy FSM: output depends on current state & input

Mealy: less states, larger output, lower reaction time
Designing an FSM

always reset: asynchronous (indep. from clock), syn-
chronous (sampled at clock edge only)
1. in-/outputs, 2. states, 3. transitions
next state: transition table, encoding, equations, impl.
output: output table, encoding, equations, impl.
drawing: state register, next state l., output l.

State Encoding
full encoding: min flip-flop, max bits: log2 states
1-hot encoding: max flip-flop, min n.s.l., 1 bit ↔ 1 states
output encoding: moore only, min output l.

Hardware Description Languages

requirements: specify, simulate, synthesize — common:
Verilog(here), VHDL

key principles
hierarchical design: predefined gates, complexity
through instanciation — minimize complexity
top-down: first top-level, identify lower-level
bottom-up: build with whats available → complex
synthesis: HDL → netlists — optimal solution not guar-
anteed, write ’nice’/easy synthesizable HDL code
simulation: verification & testing

Verilog
module is main building block, (name, ports, function-
ality) — not programming language: think in hardware
case-sensitive, names start w/o numbers
expressing numbers: ‘N’Bxx‘, N:number of bits,
B:base (b,h,d,o), xx:number (can use for readability,
X (invalid), Z (floating))

Module definition

module example(a,b,c)
input a;
input [31:0] b;
output c;

endmodule

module example( input a,
input [31:0] b,
output c );

here comes functional spec.
endmodule

Functional specification
use ‘assign y = ...;‘ for continuous assignments (wires)
— continuous as RHS change → immediate LHS
change
general

assign y = longbus[12:5]; // slicing
assign y = {a[0],a[0]}; // concatenation
assign y = {4{a[0]}}; // duplication

structural(gate-level) instanciation (only)

module local_name ( .port(local1), .port2
(local2) ); // instance

module local_name ( local1, local2 ); //
shortform, order!!!

not g1 ( out, in );
and g2 ( out, in1, in2 );
or g4 ( out, in1, in2 );

behavioral logical&mathematical operators, high-level

assign y = ∼a; // not
assign y = a & b; // and
assign y = a | b; // or

operators (in hierarchy) bitwise: ∼not, *mult, /div,
%mod, +add, -sub, <<shift(l), >>shift(r), <,<=, >
,>=, ==, ! =, &and,ˆxor, |or, ?:ternary
ternary operator: ‘assign y = s ? d1 : d0;‘ (d1 if s true,
else d0) — nesting allowed
reduction operators: ‘assign y = &a;‘ instead of ‘= a[0]
& a[1] & a[2] & ...;‘.

Abstraction levels
structural (low-level): tedious, better optimizations
behavioral (high-level): easier, harder optimizations

Parameters

module MyModule #(parameter W_A = 8,
parameter W_B = 16) (input [W_A-1:0]
a, output [W_B-1:0] y);

endmodule
// instanciation:
MyModule #(16, 32) U2 (.a(ia), .y(iy));

Sequential Circuits
for memory, FSMs, ... we need clock, always-block, ...
store values: declare ‘reg‘ instead of (implicit) ‘wire‘
then do procedural assignments, RHS change → LHS
only when called — blocking: = immediately — non-
blocking: <= at the end of block all together — either
blocking or non-blocking in block
always: change of value in sensitivity list → executed,
if (*) then all RHS signals — should not two always
blocks with same sens.list or same assigned signals —
can annotate signal als ‘posedge‘/‘negedge‘ to only trig-
ger on change to +/- — can do combinational logic: ef-
fective * sens.list, all LHS always updated
if...else, case: only in procedural blocks

always @ (sensitivity list)
begin // only if multiple statements

p = a & b; // either this
p <= a & b; // OR this

end // only if multiple statements
always @ (*) begin

case (data)
4’b0010: b = 2’b00;
4’b0011: b = 2’b11;
default: b = 2’b10;

endcase
if (a == 4’b0001)

// statement
else begin

// statements
end

end

blocking: complex combinational, non-blocking: seq.
Timing

add delay with #time, linked to statement, separate
within procedural block (always, initial)

’timescale 1ns/1ps
...
assign #9 z2 = a;

Timing and Verification

clock to fast → failure — transistors: time to switch
(electron speed limit, capacitance) — env. impacted

Timing in Combinational Circuits
contamination delay tcd: until output starts changing —
propagation delay tpd: until output settles

compute from shortest and longest/critical path
glitches: input change → two output transitions — Kar-
naugh maps: moving between p.implicants: indication
— neglect in synchronous circuits: fixing expensive

Timing in Sequential Circuits (registers)
clock: period/cycle time Tc

Input
setup time tsetup: ∆time stable before sampling
hold time thold: ∆time stable after sampling
aperture time ta := tsetup + thold

Output
contamination delay tccq: earliest Q change after clock
propagation delay tpcq: ∆time after clock that Q settles

Constraints
setup: TC > tpcq + tpd + tsetup =seq. overhead+work
— low tpd: high speed, high tpd: lower efficiency
hold: tccq + tcd > thold → minimum tcd

Clock Skew
:=∆time two clock edges — minimize! — tskew: worst
setup: TC > tpcq+ tpd+ tsetup+ tskew = tpcq+ tpd+
tsetup,effective — hold: tcd + tccq > thold + tskew =
thold,effective
=⇒ cirtical path design (minimize!), balanced design

Verification & Testing
difficult today: complex — do on-
line testing (while in use), important:
S(ilent)D(ata)C(orruption)/C(orrupt)E(xecution)E(rrors)
pre-silicon testing: formal, HDL sim., circuit sim.(here)

high-level
sim cost
> low-level: high-level funct. verif.&low-

level timing, power
Functional Verification & Testing

operates correctly — D(evice)U(nder)T(est) — input:
test patterns, output compared to reference values —
simple: man./man., self-checking: man./autom., au-
tom:./. (in-&output generation / error checking) — self-
checking: testvectors (in-/output in file) posible
brute-forcing NEVER feasible

module testbench3();
reg clk, reset; // internal
reg a, b, c, yexpected; // testvector
wire y; // output of circuit
reg [31:0] vectornum, errors; // track
reg [3:0] testvectors[10000:0];// array
test dut (.a(a), .b(b), .c(c), .y(y) );
always begin // no sensitivity list

clk = 1; #5; clk = 0; #5; // 10ns
period

end
initial begin

$readmemb("example.tv", testvectors);
vectornum = 0; errors = 0;
reset = 1; #27; reset = 0;

end
always @(posedge clk) begin

{a, b, c, yexpected} = testvectors[
vectornum];

end
always @(negedge clk) begin

if (∼reset) begin
if (y !== yexpected) begin

$display("Error: inputs = %b", {a
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, b, c});
$display(" outputs = %b (%b exp)

",y,yexpected);
errors = errors + 1;

end
vectornum = vectornum + 1;
if (testvectors[vectornum] === 4’bx

) begin
$display("%d tests completed with

%d errors", vectornum,
errors);

$finish;
end end end endmodule

Timing Verification & Testing
check: timing constraints recognized — high-level sim.
with #time — circuit-level after synth.

Von Neumann Model

V.N.M: fundamental computing model: mem-
ory(data,instructions),processing unit,input, out-
put,contorl unit — instructions in linear memory array,
sequential instruction processing

Von Neumann Model
register file,memory,IP exposed to programmer

Memory
grouped: bytes (8 bits), words (8,16,32,...) — address
space — addressability: byte(MIPS,LC-3b), word(LC-
3) — capacity=address space·addressability — en-
dianess: big(most-significant addr. last),little(least-
sig.addr.last)
read/write with M(emory)D(ata)R(egister)&M(A)ddressR

Processing Unit
comprises many F(unctional)U(nits) — ALUs/FUs pro-
cess words — register file close to compute (word size)

Control unit
conducts step-by-step execution of instructions with
I(nstruction)R(egister),P(rogram)C(ounter)/I(nstruction)
P(ointer) — IP increment by multiple bytes/word/...

Dataflow
other execution models exist — instructions fetched/ex-
ecuted in dataflow order/when operants ready — no pro-
gram counter: notifies receivers, instruction executed
when all received (tokens) — inherently more parallel

tradeoffs (from von Neumann difference) — partly inte-
grated internally (usually not exposed to programmer)

Instruction Set Architectures (ISA)

ISA: instruction set (opcodes, data types, addressing
modes, length), memory (address space, addressability),
register file (size, count) ⇔ everything programmer
instructions opcode + operands — three instruc-
tion types below — opcodes: different amounts ↔
hw/sw complexity — operative: do computation, data-
movement: load/store memory, control: change control

flow
data types one/several data types: 2’s complement inte-
gers, unsigned integers, floating point numbers
semantic gap hw/sw translator for ISA/semantic change

Addressing Modes
specify location of operands: LC-3 all those, MIPS not
indirect but pseudo-direct
PC-relative: ‘memory[ PC(incremented) +
signext(offset) ]‘ — limit: target close to PC
indirect: ‘memory[ memory[ PC(incremented) +
signext(offset) ]]‘ — can access everywhere
base+offset: ‘memory[ baseregister + signext(offset) ]‘
— can access everywhere
immediate: hardcoded value
register: NOT memory, just specify register address

Instructions
MIPS

r-type, i-type (immediate), j-type (jump) (, f-type (float))
— r: additional func bits for operation (opcode 0)
operative instructions
r-type: op,src,src,dst,shift,operation

i-type: op,src/dst(base),dst/src(register),immediate/literal

data movement instructions
i-type: ‘sw $s3, 8($s0)‘ (base+offset), ‘sw rt, imm(rs)‘
— ‘lw ...‘
lui (load immediate): ‘lui $s0, 255‘/‘lui rt, imm‘, ‘ori
$s1, $s0, 42‘/‘ori rt, rs, imm‘
MIPS byte-addressable: word x with offset 4x (32bit)
control instructions
i-type: BRANCHES ‘beq rs, rt, imm‘ (rs==rt → PC =
PC(incremented) + signext(offset) * 4) — JUMP j-type

‘j target‘ (PC = PC(incremented)[31:28] — targer * 4),
‘jr register¿, ‘jal ...‘ (function calls)

LC-3
operative instructions
ADD, AND (no subtraction)

NOT: only consider OP, DR, SR1, everything else 1 —
‘NOT R3, R5‘
immediate: ‘ADD R1, R4, #-2‘

data movement instructions
word-addressability-LD, LDR, LDI, LEA, ST, STR, STI
LD/ST: ‘memory[PC(incremented) + signext(offset)]‘ -
‘LD R2, 0x...‘

LDI (indirect): ‘memory[memory[PC(incremented) +
signext(offset)]]‘
LDR: ‘LDR R1, R2, 0x1D‘, ‘memory[BaseR + offset]‘

LEA: as LD but ‘PC(incremented) + signext(offset)‘
(w/o memory)
control instructions BRANCH
update to register: N(egative), Z(ero), P(ositive) condi-
tion codes set — BRn, BRz, BRp, Brzp, ... (if one true)

JUMP ‘JMP BaseR‘

TRAP: OS call (8bit vec)
Functions

calling: jal (MIPS), jsr (LC-3) — returning: jr (MIPS),
ret (LC-3) — arguments: $a0-$a3 (MIPS) (stack $sp if
more) — return value $v0 (MIPS) — only $t regs not
guaranteed to be preserved (MIPS)

Microarchitecture/uarch
uarch: hw internal (must not confirm ISA) — uarch can
change w/o ISA — uarch follows design points

Basics
build system (hw(here) or hw with software translation)
— instruction proces.: A(rchitectural)S(tate)→AS’ —
define finite state machine det. AS’ — state trans.
atomic for program.
components: datapath (deal w./transform data signals,
FU/ALU, reg./mem — hw for flow of data), control
logic (hw for control signals, what datapath hw should
do) — contorl signals: combinational vs. microcoded

Performance Analysis
C(ycles)P(er)I(instruction) · C(lock)C(ycle)T(time) =
instruction ex.time — #instructions·average CPI·clock
cycle time=program ex.time — CPI: constant(single),
varying/shorter(multi)
single: ’longest’ instr./critical path det. CCT — deter-
mine by cons. all instr.types (control logic matters too)

Single-cycle uarch
1 instruction/clock cycle — slowest instruction bot.neck
many disadvantages: slowest is bot.neck, resource du-
plication, complex implement., diff.2optimize

Multi-cycle uarch
1 instruction/multiple clock cycle — only exe. req. IPCs
— CCT not det. by ’slowest’ instr. (CCT indep. in-
str.proc.time) — crit. path design, bread&butter, bal-
anced design — allows for waiting (for memory, ...)
adds seq. reg. overhead
AS→step1→step2→...→AS’ — design FSM: (mult.)

states/IPC stage — states def. by control signals
control logic implemented as FSM

Pipelining

introduce concurrency to multi-cycle — fully separate
stages: diff. instr. in diff. stages — easy to start with
single cycle as resource layout more suitable
divide IPC into distinct stages — req. suff. res./stage —
diff. intr./stage
steps seq. dependent, consid. dep. between instr., con-
sid. imbalance between stages
have lead-in/-out, full utilization middle

Pipelines
ideal: no inter-stage overhead, uniform partitioning
uniform partitioning: S=seq. delay/stage,
time/stage=T

k
+ S, R cost/register, cost=G+Rk

Pipelining instruction processing
simple 5 IPC stage stages — imbalanced stages: lower
speedup — all must proceed all stages (wasted time)
pipeline registers at level between stages (latch on trans.)
control signals: same as single-cycle, must latch too/-
keep in phase with data — option 1: generate once,
buffer until consumed — option 2: buffer instruction
parts, generate on demand
problems: external (wasted stages)/internal (unbalanced
staged) fragmentation, stalls (dependencies)

Stalls & Dependencies
causes: contention, dependencies, long-latencies
stalling: disable PC&IF, keep instr.in stages (add we
signal to pipeilne registers f,d,e), synchronous reset ex.
pipeline register, bubbles

Data Dependencies
flow (true), anti (write after read), output (write after
write)
anti/output: false, always same stage
flow: detect&wait, detect&bypass, detect&eliminate,
detect&move, predict, sth.else — 1st half write,2nd read
interlocking (detection, correctness guarantee): sw
(static scheduling)/hw, (bubbles, find indep.instr.) — sw
difficult: unknowns→profiling
1.hw scoreboarding: valid bit/register, stall when invalid
2.hw comb.dep.detection logic
detect&wait stop up-stream stages, drain down-stream
detect&bypass forward data as soon as available, allow
dependent instr. to execute until data needed, add bypass
paths — still stalling when no bypass possible (latency)
detect&eliminate compiler, reorder indep.instr., nops
fine-grained multithreding instructions in pipeline
from different indep. threads — no: add. logic, waste
cycles — disadv.: low single-thread, hw, contention,
need threads — employed in GPUs/accelerators

Control Dependencies
next instruction depends on control flow instr., next ad-
dress maybe not directly available
option branch prediction: speculative execution, flush
pipeline on wrong prediction — flushing: misprediction
penalty
option early branch resolution: check resolution in de-
code, additional logic/hw, less flushing/branch mispre-
diction penalty

Remarks
combination difficult (timing)
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Precise exceptions
idea: indep. instr. exec. on diff. hw (division, add,
...) — older instruction finishes with error after younger,
younger’s writeback sequentially invalid
exception: program-internal problem (prog. context) —
interrupt: external event (syst. context)
upon(excpt. immed., intrpt delayed): stop, save, handle,
return — precise AS, flush younger instr., save PC/reg-
isters, redirect to handler
precise: when handling, AS consistent (prev. retired,
later !retired)

ensuring precise exceptions
single-/multi-cycle: easy — instr. for getting exception
in handler (mfc0, MIPS)
pipelined: difficult — all worst case latency bad — ap-
proaches: reorder buffer (here), history buffer, future
register file, checkpointing
R(e)O(rder)B(uffer): buffer out-of-order results, retire
in-order — circular buffer — valid flag, destination reg-
ister id, destination register value, store address, store
data, pc, valid bits for registers control bits, exceptions
decode: reserve in ROB, complete: write to ROB, ROB:
oldest w/o exception complete: retire, restore: flushing
ROB
dep. instr.: bypass paths, read from ROB, read
from reg.file — ROB requires expensive search/con-
tent addressability, avoid w indirection — reg.file
stores valid flag, ref.to ROB (access reg.file), maybe
R(egister)A(lias)T(able)

Out-of-Order Execution

out-of-order dispatch, out-of-order completion, in-order
retirement — internal dataflow execution
non-ready instructions in reservation stations, operands
of reservation station entries ready: dispatch
complete parallel execution: long-latency tolerance
hw requirements: consumer-producer link (renaming/-
tagging), reservation stations, track readiness/broadcast
operands, dispatch (schedule), complete, retire

Tomasulo’s Algorithm
initial OoO execution at IBM by T. — no precise excep-
tions/ROB initially
decode: add w renamed operands to reservation station,
add own output to RAT (stall if no res.station avail-
able) — in res.station: monitor C(ommon)D(ata)B(us)
for source operands/tags — ready: dispatch to FU —
FU completion: broadcast tag & value on CDB, register
file also listens, free name tag
req. busses from each FU to all registers/table entries

How it works
de-/allocate reservation stations, global/FU reservation
station, ROB/res.stations/reg.file, broadcast simultane-
ously/serial/...

Avoiding Value Replication
values replicated in tables: waste — introduce
P(hysical)R(egister)F(ile) (centralized value storage) —
references to PRF from ROB, ...
works because tags/references smaller than values

Remarks
internal dataflow graph limited to instruction window
(determined by number of reservation stations) — ex-
ploits irregular parallelism¶

Precise Exceptions

Loads & Stores
static/dynamic dependencies, small/large state space,
(in)visible to others
cor1: renaming useless during execute, cor2: dep. deter-
mined after (partial) exec., cor3: ready, dep. unknown if
others with unknown addr.
scheduling approaches — conservative: wait until cer-
tainty — aggressive: assume independence — intelli-
gent — latter 2 req. recovery
find dependency — opt1: all prev. committed — opt2:
buffer of pending stores, check for match
reordering must buffer stores for seq. semantics — de-
pendency: access buffer on load
L(oad)Q(ueue) & S(tore)Q(ueue), both in one queue
possible — complex store-to-load forwarding logic to
search for value

Dataflow & Superscalar Execution

Dataflow — may directly mapped to hw — diff. on to-
day’s hw — diff. with today’s concepts(excpt.,debug,...)

Superscalar Execution
OoO-exec. horizontal parallelism — sup.scalar: verti-
cal parallelism — also parallel fetch, decode, retire: N -
wide sup.scalar⇔ N /cycle
req.: dep.checking between N instr., duplicate datapaths
dependencies: detect & wait, detect & bypass, detect &
eliminate, detect & move, speculative, FGM

Branch Prediction

always control dependencies — 15-25% control flow —
N branch resolution latency: N · W (sup.scalar) waste
— want prediction during fetch (so that ready for next)
types (direction, possibilities, when): conditional (un-
known, 2, execution), unconditional (always, 1, de-
code), call (”), return (always, many, execution), indi-
rect (”)
goal: keep pipeline correct full: stall, prediction, branch
delay slot, FGM, predicate execution, multipath execu-
tion

Static (compile-time) Branch Prediction
always (not) taken, BTFN, profile, program analysis —
req. ISA support (metadata/-bits) — reduce: penalty,
mispredictions
Always (not) taken taken: ≈ 60 − 70% accu-
racy — sw/hw: increase probability (code layout) —
penalty←bubble/flush count
BTFN: backward taken (loops), forward not taken

Profile: likely direction from profile run, accuracy de-
pends on representitiveness of profile run
Program Analysis: use heuristics (take loop, not take
fp comparisons, not take leq), misprediction 20 % 1993
Programmer: language pragmas, programmer hints

Dynamic (runtime) Branch Prediction
BTB: Branch Target Buffer, store branch target, access
with PC later, content hints whether taken
Last Time Predictor: predict branch as last time,
bit/branch, store in B(ranch)H(istory)T(able), corre-
sponds to small FSM, loop: N−2

N
, good long, bad short

N -bit Counter: N instead of 1 bit for counting, less
volatile/add hysteresis, 2: strongly/weakly (not) taken,
80-90% accuracy on average
Two-level Prediction: use P(attern)H(istory)T(able)/PAT,
index with history, get N -bit prediction counter
global: G(lobal)H(istory)R(egister), 3-bit GHR reason-
able, improved with GHRxorPC for indexing
local: L(ocal)HR/BHR for each branch, one PHT
general: BHR: G(lobal)/S(et of branches)/P(branch),
PHT: G,S,P, PHT counters: A(adaptive), S(tatic)
loop branch counts loop iterations, compares to limit
perceptron simple ML, single neuron: weight*x+bias
> 0, 1 perceptron/branch, weight↔bit on GHR

IF sign(yout) ∕= t or |yout| ≤0
FOR i=0..=n:

wi = wi + txi

hybrid history-length predictor
Hybrid multiple predictors, select best for branch

Branch Confidence Estimation
useful for hybrid/choosing among predictors, simple:
track past (in)correct at branches — index table with
PCxorGHR & reduction on past correctness

Branch Delay
delayed branch execution, N instructions after branch
always executed — perfect branch resolution, diff. to
find instructions for delay slots (esp. cond. branches)
with squashing: not execute delay slots when not taken

V(ery)L(ong)I(nstruction)W(word)
Architectures

similar to superscalar, but compiler already packs in in-
str. bundles — true VLIW: instr. in bundle indep. (req.
hw understanding), sometimes even indep. between seq.
— lockstep execution
bundle has structure: maybe instr. type linked to posi-
tion
Philosophy similar to RISC: compiler most hard work,
hw simple (faster, energy efficient) — low power ∕= low
energy
tradeoffs: simple hw, compiler indep instr., recompila-
tion for new uarch req., lockstep: stalling of indep. instr.
trace scheduling (indep. of VLIW mostly) - basic
block: single entry/exit point, after branch reordering
for optimization — super block: combine frequent basic
blocks to one single-entry/multiple-exit blocks, enables
aggressive optimizations for superblock/common case
ISA translation through hw/sw, to get better tradeoff

Systolic Array Architectures

in ASICs, accelerates certain tasks/exploits regular par-
allelism, highly concurrent, balanced compute & I/O
use regular array of P(rocessing)E(lements), collective
compute, max. compute/data, PEs may be structured
many-dimensional, PEs local memory & execute
needs indep. data, carefully input data, buffer output
flexibility possible through weights in PEs, may be
changed on the fly, PEs may have own data/instr. mem-
ory
Convolutions as in CNN, CV, filtering, ... — can be
implemented in systolic arrays (via matrix multiply),
Google TPU, Cerebras WSE
examples/use warp computer: 10 programmable pro-
cessors in linear array, programmable, extends general
purpose computer

Decoupled Access and Execute
mitigate Tomasulo’s complexity — separate memory ac-
cess & execute — separate memory/execute instruction
streams, execute in separate parts, communication via
FIFO queues — req. synchronization (branches, ...)
can run ahead of each other/some OoO without reser-
vation stations etc., compiler support, branch req. syn-
chronization (loop unrolling to reduce)
compiler instr. splitting vs. dynamic
not done on ISA-level usually, but hw-internal approx.
for latency tolerance

S(ingle)I(nstruction)M(ultiple)D(data)
Architectuers

exploits regular parallelism, same operation done on
multiple data — SIS(ingle)D, M(ultiple)ISD, MIMD —
MISD generalization of systolic arrays
SIMD: same instruction to multiple processing engines
(with diff. data) — I(nstruction)L(evel)P(arallelism) —
amortization of fetch overhead — data parallel program-
ming model
Vector Register holds N M -bit values, entire vec-
tor/register — also control registers: V(ector)LEN(gth)
(upper bound M ), VSTR(ide), VMASK (set with vector
test instr.): limits proc. to certain vec. elements
operate on vector instead of scalars here — must: load-
/store vectors, operate on diff. VLENs, vec. elements
may be stored apart in memory (def. by VSTR) as row/-
column in matrix
Vector Processors instr. on mult. data in consecutive
time steps — pipelined execution on hw, operation/ele-
ment in consecutive cycles — very deep pipelines pos-
sible (indep., !control flow, easy (pre)loading) — VFUs
can also be deeply pipelined
Array Processors instr. on mult. data in parallel (mul-
tiple PEs)
combination array & vector combined in practice —
pipeline with multiple resource instances — may par-
tition vector register: partition linked to specific VFUs
(via lanes) — may overlap execution of multiple vector
instructions

Memory (vector)
memory (bandwidth) easily bottleneck — load/store
req. mult. memory accesses — get high throughput(1)
with banking memory banking divided, banks accessed
independently, share address/data busses (reduce pins),
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start/complete 1 bank access/cycle — N concurrent ac-
cess to N banks possible (relatively prime best) — sus-
tain throughput when ”#banks≥ #bankLatency” — bank
conflicts: more banks, more ports/bank, better data lay-
out, better address mapping to banks

Chaining (vector)
forwarding from one VFU to next VFU as soon as result
available — still memory limits (banking, ports, ...)

Remarks
stripmining enable vectors longer than vector register
entry length — do multiple iterations (diff. VLEN last)
scatter/gather vectors might not be stored in strided
fashion, index vector defines references/indirection, can
scatter/gather with index vector + base address
conditionals in loops can use VMASK if not want to
execute operation on specific vector elements, encode
condition in bitmaks/VMASK (predicate execution) —
hw simple: execute all, turn of write — hw density-time:
scan VMASK, only execute necessary
automatic code vectorization compilers may unroll
loops to vector operations etc.
modern ISAs modern systems not full ISAs, have ex-
tensions (packed arithmetics)

GPU Architectures
works like SIMD underneath (execution
model)/MIMD/SIMT(hread), programmed using mul-
tiple threads (programming model)/SP(rogram)MD:
thread for each independent execution, threads run same
program
threads executing same instruction grouped into warps
(wavefront) by hw automatically, executed via SIMD at
once (thread executes on SIMD line), each tread uses id
to identify its task
SIMT advtgs.: threads separate (don’t need GPU), flex-
ible warp grouping (supports branches), long latency
tolerance
each warp (thread even) indep.: no interlocking, no dep.
checking, fine-grain multithread warps → easy to keep
pipeline full
A GPU comprises many S(treaming)M(ultiprocessors),
SMs comprise many SP(rocessors) themselves. Each
SM may execute multiple warps in a pipelined fashion.
One instruction is executed as a SIMD instruction so
that each thread is executed on a SP in the end. SIMD
line ↔SP+ — blocks: group of threads, can cooper-
ate/share data — grid: comprises blocks, execute all the
same kernel
dynamic warp regrouping (branch), with many threads
efficient, can’t move threads between lanes (separate
registers, FUs)
underutilization: branch divergence, long latency ops.
— two-level warp scheduling of smaller warp groups
(one latency blocks ready, others can continue) — large
warps, break into sub-warps
terminology generic, NVIDIA, AMD — vector length,
warp size, wavefront size — pipelined FU/scalar
pipeline, streaming processor/CUDA core, — SIMD
function unit/SIMD pipeline, grou pof N streaming pro-
cessors, Vector ALU — GPU core, streaming multipro-
cessor, compute unit

Memory

SRAM: on-chip/in-core, DRAM: ’typical’, storage
Importance

most area is memory — memory is main nottleneck —
started 3D-stacking

wordload ML, AI, genomics, databases, datacenter
→ near/in-memory computing or FPGAs performance
memory stalls ≈ 70% stalls energy
reliability/security

Fundamentals

virtual/physical system maps virtual memory addresses
to physical memory — programmer sees ’infinite’ mem-
ory/translation invisible — last PART — physical here

ideal memory 0 latency, ∞ capacity, 0 cost, ∞ band-
width, 0 energy

memory arrays flip-flops/latches: fast, expensive
(bit ↔ 10s transistors) — S(tatic)RAM: relatively
fast, volatile, expensive (6+) — D(ynamic)RAM:
slower, refresh, volatile, special manufacturing, cheap
(1trans.+1capacitor) — storage: much slower, non-
volatile, very cheap
memory: 2-dim. arary of bit cells — 1 bit or byte or
.../cell — rows (=:depth) and columns (=:width)

reading: sensing amplificers — detect signal change —
SRAM good: complementary — reset bitlines before-
hand
in practice: multiple words/row → squared memory
(useful for caching)
dram: capacitor leaks, refreshing — sram: used on-chip
simple scaling difficult: latencies

DRAM Subsystem

channel → rank → bank → subarrays → mats chan-
nel each channel has a memory controller, one interface
to compute unit — everything to one DIMM DIMM
dual in-line memory module, physical module/organi-
zational structure, rank on front and back — everything
to one rank rank has 8 chips on it (ex) — distributed to
chips chip has 8 banks (ex) — everything to one bank
bank has 32 rows with 8 bytes (ex) — accessed in in-
dependently in parallel, each bank is a memory array —
some buffers used/a type of cache — row address (part
of address) to get row, sense amplifiers put in row buffer,
column address (part of address) to get data, write back
(read is descructive) — in practice: subarrays with local
row buffer in array, row decoder forwards part of address
to local decoder — MAT: usually refers to one row in a
subarray, but may divide row into two subrows to not
have to active the entire row, depending on selected col-
umn — read dominated by wordline, bitline drives

DRAM Operation
decode row address, drive word-lines, selected bit-cells
drive bitlines, differential sensing, decode colum ad-
dress, seelct subset of row, send to output, (rewrite as
destructive), precharge bit-lines
cache blocks (blocks of memory) distributed across
chips, accessing takes amount

rankAccess , dist. across chips
Emerging technologies

P(hase)C(hange)M(emory), resistive memory, state
(crystalline/high reflexivity/low resistivity vs amor-
phous/low reflexivity/high resistivity) changed using
heat — higher density, lower cost, non-volatile, no re-
fresh, slower, endurance problem, higher-energy
SST-MRAM (magnet based, polarity)
Memristors: atomic structure
Flash, SSD common — doubtful for past two decades
(flash durability problems)

Hierarchy & Caches
hierarchy: storage (off-chip), DRAM (off- or on-chip),
SRAM (usually on-chip) as L3 cache, L2 cache, L1
cache (in-core), register file — bigger → slower, faster
→ expensive — cheaper with time
deal with opposing goals: levels of hierarchy/caches —
due to locality (past predicts future) appears fast & large
— temporal locality: likely to use same data reference
again, spatial locality: likely to operate on related/close
data
manual cache management: programmer/compiler must
do all, still for embedded, GPUs, accellerators (typi-
cally sacratchpad today, addition) — automatic: hard-
ware manages across all levels, transparent to program-
mer, hides uarch details — today: usually only register
file manual
extension: remote memory with remote nodes on low-
latency network
sharing/separating data/instruction caches — utilization
vs. quality of service — l1 split, l2+ shared
Latency intrinsic access time ti := get local data/learn
miss — perceived access time Ti := ti+ getting data
from higher level if miss — hit rate hi :=

#hits
#hits+#misses

— miss rate mi :=
#misses

#hits+#misses — Ti = ti +miTi+1

— A(verage)M(emory)A(ccess)T(ime): usually lower
better
optimize — mi low: increase Ci → increase ti, better
cache management — lower Ti+1: make faster (expen-
sive), intermediate hierarchy level

Cache Design
cache: memorizes used/produced data — cache com-
prises cache blocks — cache block stores block of data
from higher level — block: subsequent set of addresses
with metadata (source, access patterns) — memory split

into fix blocks, cache can store blocks
questions: placement, replacement, granularity of man-
agement, write policy, instruction/data

storing cache blocks
have tag (valid, tag) and data stores (data), indexed by
index bits
+associativity ↔ +hit rates, -speed, costly hw — return
for +associativity→+hit rates diminishes
direct-mapped block only in one cache block — cache
block determined by index bits of address — index
cache with index bits, compare tag (remaining address
part), miss or index data store — contention (conflict
miss) if two blocks with same index bits in cache
set-associative block in certain set of cache blocks, less
conflict misses — n-way/degree n: n cache blocks/set
— more expensive hw: compare all cache blocks in set
— bigger tag, smaller index
full-associativity any block in any cache block — one
set — very expensive: many comparators

Cache Management
cache full & new block: conflict miss — must evict be-
fore add — define priority, who to evict — insertion
(new priorities), promotion (change priorities), replace-
ment (who evict?) — eviction/replacement policy
L(east)R(ecently)U(sed) evict lru, difficulty:
track order — minimize processing (+memory):
⌈log2 n⌉bits/block (position) — minimize memory
(+latency): ⌈log2(n!)⌉bits (combination ↔ order) —
true LRU expensive: not in modern systems
locality approx.: not M(ost)R(ecently)U(sed) — hier-
archical LRU (expl. MRU groups, LRU in groups) —
victim-victimNext
Random sometimes better than LRU/MRU — set trash-
ing if working set>associativity → Random — set sam-
pling: compare performance repeatedly, choose then
Belady’s OPT replace block furthest referenced —
provably minimizes miss rate — v.diff. to impl. — min.
miss rate ∕= min exec. time (diff. latencies, overlapping)

Multilevel Management
higher level: +size, +associativity, +latency, tag/date se-
rially — access higher levels in parallel (speculative) vs.
serially on miss — faster vs. energy — latter: different
policies as different access patterns
data in all/only one cache?, bypass when loading?,
evicted put where? — inclusive: block in inner also in
outer (coherency), exclusive, inner never in outer (space
utilization), non-inclusive: may/may not

Writes
write through: write to higher level caches as soon as
data is modified (+simple, +coherency, -bandwidth) —
write back: write back when evicted (combine, +band-
width, -dirty bit) — dirty bit (in tag store): indicates
modified
allocate cache block for write on miss? — not if over-
written — subblocks with indivd. dirty bits: load not
entirely overwritten

Performance
cache size (working set) for temporal locality — block
size for spatial locality - for large blocks: critical word
first (forward immed.), subblocks (load indep. supply
faster) — associativity (-misses, +latency, +cost) — re-
placement policy
miss/hit rates — compulsory miss: first block reference
→ +block size, prefetching — capacity miss: all misses
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in fully-associative, opt. replacement, same capacity →
software management of working set — conflict miss:
all other misses (different organization could avoid) →
+cache size, +associativity (rand. indexing, software
eviction hints, victim cache)
improve performance — -miss rate: associativity, bet-
ter policies, sw opt. — -miss latency/cost: multi-lvl.
caches, critical word first, subblocking, better replace-
ment policy, non-blocking cache, sw opt. — -hit laten-
cy/cost
software opt.: restructuring data access patterns (loop
interchange, loop fusion, array merging), restructuring
data layout (data structure separation/merging, exmpl.
outsource rarely-accessed fields of objects as reference),
data reuse/blocking/tiling (expl. matrix multiply)

Advanced Caching
M(emeory)L(evel)P(arallelism) memory access may
have long latency — impact determined by: latency
overlapped?, latency tolerance?, evicting longer-to-
refetch block?
MLP: prefer parallel misses to better utilize stall — min.
miss rate, thus, not opt. — prefer elimination of isolated
miss, higher-latency misses
Caches in Multi-Core Systems shared vs. private, QoS
& predictability, allocation/thread, shared/limited band-
width/space
shared caches +utilization, -comm. latencies, +shared
mem.program. model/+coherency, +contention, -single
thread performance, -QoS, -consistency, +capacity, -
speed — cache management to mitigate
Cache Coherence private caches, shared memory
comm., cache incoherence → cache coherency protocol
broadcast based: invalidate/update elsewhere on write
directory-based cache coherence: directory stores what
caches have, caches consult directory — exmpl.: store
P + 1 bits/cache block, 1/P indicates contains, 1 exclu-
sive bit — read: set process bit, invalidate exclusivity
before (directory + exclusive thread) — write: invali-
date all other, exclusive to this

Prefetching
reduce miss rate & latency (maybe eliminate misses) —
speculative, works with predictable patterns — nos mis-
prediction penalty
What address address prediction algorithm — prefetch
accuracy:= used prefetches

sent prefetches — patterns, compiler/program-
mer input — stride, repeating variable stride, rep. pat-

tern,
When (early, late, on-time) affects timeliness — earlier
or aggressive → timely
Where to place caches (today), separate buffer — role
in replacement policy (equal to demand fetched, ...)
Where prefetcher all memory-lvls. (today)
How sw prefetching: prefetch instructions — hw pref.:
finds access patterns, prefetches automatically — execu-
tion based: ’thread’/instr. flow from program to prefetch
(sw or hw) — (cooperative, hybrid)

Prefetchers
Stride record stride, stable N : predict next M — per-
instr. or per-memory-region — need last address ref-
erenced, stride, (confidence) — stream prefetching (hw
for N = 1)
complex prefetchers multiple regular strides (multi-
stride detection common today), linked data structure
traversal, indirect array access, multiple data structures
concurrently — bootstrapping: table various histories
self-optimizing memory (Pythia) get state (memory re-
quest features), prefetch, get reward (optimize) — fea-
tures: PC, branch PC, last 3 PCs, cacheline address,
physical page number , ∆two cacheline addresses —
prefetch as offset — reward: usefulness (accuracy, time-
liness), system-level (memory bandwidth, cache pollu-
tion, energy) — outperforms current solutions in always
hybrid hw
multi-core prefetch shared data (avoid coherency
misses), important as shared/limited res. — throttle
prefetching: conflicts, contention (bus, RAM)
execution based pre-execute program part, initiation
loads of data — separate core, FGMT, same thread con-
text/during cache misses — word for branches too
runahead execution ideally OoO w large instr. window
(expensive) — upon oldest instr. long-latency: runa-
head mode: speculative pre-execute (without stalling),
generates misses/prefetches — upon long-latency re-
turn: flush, resume — no add. stalling, accurage, in-
str. prefetch, train other prefetchers, limited by branch
prediction, limited by MLP, -energy — best in hybrid

Performance
accuracy:= used prefetches

sent prefetches — coverage:= prefetched misses
all misses —

timeliness:= on-time prefetches
used prefetches — bandwidth consumption

(best during idle) — cache pollution
correlated

Virtual Memory

multiple programs without interference, authorization,
unbound capacity — difficulties only physical: limited
size, multiple programs, ISA ∕↔ physical memory, pro-
grammer burden, data relocation, sharing data
processes individual illusion or large address space (in-
direction to physical address space) — hw & system co-
operatively manage mapping — part of ISA — benefit:
program uarch indep.

Basics
physical memory as (fully-associative) cache for
disk (block-page, block offset-page offset, miss-page
fault, index-virtual apge number) — virtual/linear ad-
dresses translation←→ physical/real addresses — map-
ping page-based (page:=block of memory, multiple
KBs), frame:=page unit in memory — mapping via
LUT/page-table (reference to memory or disk) man-
aged by OS/hw, first reference arbitrary to memory
— loading from disk/evicting from memory necessary
by virtual memory system — virtual memory system:
M(emeory)M(anagement)U(nit) + OS

page table — PTE(ntry): valid bit, PPN, replacement
bits, dirty bits, protection bits, disk, metadata — stored
in physical memory, P(age)T(able)B(ase)R(egister)

Address Translation
virtual address = V(irtual)P(age)N(umber) + Page Off-
set — offset unchanged, VPN→P(hysical)PN
valid bit set: produce page — not set: OS page fault
exception handler initiates I/O controller to load via
D(irect)M(emory)A(ccess)

eviction: CLOCK algorithm — circular buffer, refer-
ences all PTEs with physical addresses, pointer to last
examined page — evict: traverse, evict first with 0,
switch all 1s to 0s — ARC another algorithm (consid-
ers access frequency)

Multi-Level Paging
one PT/thread: huge! — multiple levels instead — VPN
split into identifier for each table hierarchy, continuously
index into lower-level tables — N -level page table, N
page table accesses — only first-level PT must be in
memory
T(ranslation)L(ookaside)B(uffer) Cache to reduce
long-latency of multi-level accesses — maybe only one
access to TLB if hit — 16-512 entries in practice, 90-
99% hit rates — consider TLB as L1 cache, memory as
L2 cache

Memory Protection
memory protection/isolation between processes if cor-
rect mapping by OS — shared physical address for
shared memory — page table stores protection bits (ac-
cess rights: read, write, execute, kernel) — access
control concurrent to translation — multi-level paging:
multi-level access (ISA specifies access from bit com-
bination) — if access violates bits, Access Protection
Exception — x86: protection rings 0 (kernel/OS-only)-
1/2(OS service)-3(user application)
RowHammer evades protection by exploiting hardware
failure — induce bit-flips in neighboring rows by read-
ing a row repeatedly — can gain kernel privileges

Final Considerations
can do hashed page tables — special treatment of vir-
tualization and guest OSs: additional translation (guest
virtual, host virtual/guest physical, host physical)
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