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1 Nice to Know

We often consider graphs to analyze runtimes etc. In many cases we consider lin-log graphs,
which have a linear scale on the x-axis and a logarithmic scale on the y-axis. This exhibits expo-
nential growth as linear graphs. Also, we have log-log graphs at times, which ave a logarithmic
scale on both axis. Such settings are used to demonstrate polynomials, which are shown as lines.
Monomials with higher coefficients correspond to higher exponents.
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2 Computing with Matrices and Vectors

This heavily bases on Linear Algebra. We will deal with vectors x ∈ K where K is either R or C.
We will mostly consider real numbers here. Similarly, we work with matrices A ∈ Kn,m where n
is the number of rows and m is the number of columns. We write

A =




a11 . . . a1m

...
...

...
an1 . . . anm





and denote individual entries with (A)i,j = aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
We alwo consider submatrices. Those are defined by boundary indices:

(A)k:l,r:s := [aij ]i=k,...,l
j=r,...,s

, 1 ≤ k ≤ l ≤ n, 1 ≤ r ≤ s ≤ m

A special case of submatrices are row and column vectors of some matrix A. The i-th row is
(A)i,: := [ai,1, . . . , ai,m] , 1 ≤ i ≤ n. The j-th columns is (A):,j := [a1,j , ..., an,j ]⊤ , 1 ≤ j ≤
m.

Notice that the indexing is different between math notation, where we start with 1, and
programming/C++/code notation, where we start enumeration with 0.

There are some special matrices, which are of utmost importance:

• identity matrix

I := In :=




1 0

. . .
0 1



 ∈ Kn,n

• zero matrix

O := On,m :=




0 . . . 0
...

. . .
...

0 . . . 0



 ∈ Kn,m

• diagonal matrix

diag(d1, ..., dn) :=




d1 0

. . .
0 dn



 ∈ Kn,n, dj ∈ K, j = 1, ..., n

2.1 Software and Libraries

2.1.1 Eigen - a C++ library

Using performant numerical libraries is important for fast and efficient code. We use Eigen, which
is a header-only C++ library. Header-only means that the library is compiled each time we compile
a program. This is achieved through the library being entirely in its header files. Thus, the compiler
can perform more optimizations.

Generally, there are many different ways to implement things in Eigen. And different (short-
hand) notations. We won’t make all this explicit. Consider the following code examples to under-
stand how to work with types, templates, ...
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Types & Creating Matrices and Vectors The fundamental data type in Eigen is Matrix. We
can define three types of matrices:

• fixed size: size known at compile time

• dynamic size: size only known at runtime

• sparse/special matrices: only considered later (implicitly)

Additionally, we have to specify which scalar type we want the matrix entries to be. This will
mostly be real numbers but can also be complex numbers. Below we will assume real numbers. If
one uses different/custom scalars, one must cast appropriately.

Listing 1: Declaring Types in Eigen

1 using dynMat_t = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::
Dynamic>;

2 using dynColVec_t = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
3 using dynRowVec_t = Eigen::Matrix<Scalar, 1, Eigen::Dynamic>;
4 using index_t = typename dynMat_t::Index;
5 using entry_t = typename dynMat_t::Scalar;

Listing 2: Declaring Matrices & Vectors

1 Eigen::Matrix<Scalar, Eigen::Dynamic, 1> colvec(dim);
2 Eigen::Matrix<Scalar, 1, Eigen::Dynamic> rowvec(dim);
3 Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> testmat(

dim);
4 Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> testmat2(

dim, dim-2);
5

6 Eigen::MatrixXd testmat(dim);
7 Eigen::VectorXd colvec(dim);
8 Eigen::RowVectorXd rowvec(dim);
9 Eigen::Matrix3d test3mat;

10 Eigen::Vector4d col4vec;

Here, X corresponds to dynamic size while d indicates that we use doubles as the scalar type.
Those are just shorthand notations for what we have done manually above. Furthermore, for fixed
sized matrices, we can only use this notation for sizes up to including 5. Afterwards, we use
dynamic sizes with this shorthand-notation or must manually write the entire type.

Listing 3: Initializing Matrices & Vectors

1 + zero
2 + constant
3 + diagonal
4 + random
5 + identity

Listing 4: Accessing Matrices & Vectors

1 colvec[i] = 1; // access vector with square brackets
2 vecprod(1,1) = 2; // access matrix with round brackets
3
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4 M.block(1,1,p,q) += Eigen::MatrixBase<MatType>::Constant(p,q
,1.0);

5 MatirxXd B = M.block(1,1,p,q);
6

7 M.topRows(p);
8 M.bottomRows(p);
9 M.leftCols(p);

10 M.rightCols(p);
11 M.template triangularView<Upper>(); // .template is used for

additional safety but mostly unnecessary

In Linear Algebra more generally, we can consider submatrices. This is implemented through
blocks in Eigen. .block(i,j,p,q) corresponds to (M)i+1:i+p,j+1:j+p. The +1 comes from
the different indexing schemes.

Notice that through blocking we access/edit the original matrix and don’t create a copy!

Listing 5: Computing with Matrices & Vectors

1 dynMat_t vecprod = colvec*rowvec;

The computations we can perform are very intuitive. Multiplying matrices corresponds to
normal matrix multiplication. In the library, this is achieved through operator overloading. When
we want to perform element-wise operations such as element-wise multiplication, we need to work
with the matrices as arrays instead.

Listing 6: Matrix & Vector Methods

1 const int nrows = M.rows();
2 const int ncols = M.cols();
3 M.transpose(); // reinterpreting matrix for use as transpose for

lazy evaluation (not modification)
4 M.transposed(); // creating a new transposed matrix at call

point (no modification)

2.1.2 Dense Matrix Storage Formats

An interesting question is to ask how matrices are stored physically in memory. Conceptually,
memory is a linear array while matrices are 2D. To store dense matrices are two basic approaches.
Dense is not a precisely defined term. It means that basically all matrix entries contain information.
On the other hand, we have sparse matrices. Those are matrices, which have a special structure so
that only a few entries contain relevant information. Diagonal matrices and identity matrices are
example. For those, we only want to store the relevant entries and the special form. But for dense
matrices we must consider all entries.

Generic dense matrices are stored in row- or column-major order. Row-major means that the
elements of rows are contiguous in memory, while column-major means that column entries are
contiguous in memory.

• row-major: C, C++, Bitmaps, Python

• column-major: Fortran, Matlab, Eigen (default)

With A(i), where A is a matrix in Eigen, one gets the i-th element when considering the
linear row-major memory orientation. And with A.data(i) one can get a raw pointer to the
corresponding element.

7



The default majority in Eigen ist column-major. While the majority doesn’t matter for writ-
ing code, it provides optimization opportunities for certain operations. The performance benefits
mainly stem from cache and memory miss latencies. Which majority is faster depends on the
application. Thus, Eigen also offers the option to store matrices in column-major form.

Eigen is column-major by default. Codes optimizes for column majority usually run faster.

2.2 Computational Effort/Computational Complexity

Computational complexity is introduced as asymptotic complexity in other courses. But for nu-
merical programs, constants determined by memory access patterns etc. have a big impact. Thus,
we also consider asmyptotic behavior as a good indicator. But for actual performance assessments,
we must time the real-world performance of our programs.

When wanting to time executing to measure performance, always execute multiple iterations
of our programs, measure the runtime, and take the average result.

1 void timing(void)
2 {
3 const int K = 3; // Number of repetitions
4 // store time before all iterations
5 for(int k=0;k<K;k++) {
6 auto tic = high_resolution_clock::now(); // time before

this iteration
7 // OPERATION TO BE TIMED
8 auto toc = high_resolution_clock::now(); // time after this

iteration
9 double t = (double)duration_cast<microseconds>(toc-tic).

count()/1E6; // duration of this iteration
10 // store time o fthis iteration
11 }
12 // time after all iterations
13 // store time of all iterations
14 // compute average among all iterations
15 // print timing results
16 }

2.2.1 Asymptotic Complexity

Definition (Asymptotic) Complexity: The asymptotic complexity of an algorithm charac-
terizes the worst-case dependence of its computational effort on one or more problem size
parameter(s) when these tend to ∞.

The problem size parameter usually is the matrix/vector size. We have been familiarized with
O, Θ, o, and Ω notation. Here, we mostly consider O-notation (Landau notation). cost(n) =
O(f(n)) (or technically correct cost(n) ∈ O(f(n))) means

∃C > 0, ∃n0 ∈ N, ∀n ≥ n0, cost(n) ≤ C · f(n)

In most cases we consider polynomial runtimes O(nα), α > 0. For precise statements, we
want our runtimes to be sharp and make sharpness assumptions regarding given runtimes. That
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means if cost(n) = O(nα) we have cost(n) ∕= O(nβ), β < α. Sharpness not only holds for
polynomial runtimes. For an even more precise statements we may also consider Θ-notation,
which specify lower and up bounds.

As with asymptotic complexity, this only makes statements for large input sizes. For small
matrices, the constant factors will dominate the runtime.

2.2.2 Computational Cost of Basic Numerical Linear Algebra Operations

operation description #mult/#div #add/#sub asympt. complexity
dot product x, y ∈ R → xHy n n − 1 O(n)

tensor product x ∈ Rm, y ∈ Rn → xyH nm 0 O(nm)
matrix-vector nult. x ∈ Rn, A ∈ Rm,n → Ax mn (n − 1)m O(mn)

matrix product A ∈ Rm,n, B ∈ Rn,k → AB mnk mk(n − 1) O(mnk)

Figure 1

Of those three elementary operations, only matrix multiplication isn’t optimal. With Strassen’s
algorithm or similar algorithms, we can get close to O(n2) for square matrices but reduce the
exponent to some fraction in any case. But due to very high constants, we implement matrix
multiplication using a triple loop in basically all cases.

2.2.3 Some Tricks to Improve Complexity

This considers some very simple tricks/approaches to reduce the asymptotic complexity of evalu-
ating some expression. Here, assume that expressions such as AxHy are given. We want to see
how to optimize evaluation compared to just evaluating always the leftmost possible exprsesion
until we have a result.

Exploit Associativity While matrix and vector operations generally aren’t commutative, they
are associative. And changing the order of evaluation can noticeably improve complexity.

Consider the column vectors a, b, x ∈ Rn. Computing (ab⊤)x and a(b⊤x) yield the same
result. But the former has complexity O(n2) while the latter has complexity O(n).

Change the order of evaluation of algebraic expressions to improve asymptotic runtime.

Hidden Summation This concept is more difficult to express generally. But it many cases,
computations with matrices and vectors can be interpreted in a meaningful way. For instance,

multiplying a vector a ∈ Rn with a matrix A ∈ Rm,n, where (A)i,j =


0, i > j

1, else
, i.e., an

upper triangular matrix, corresponds to the result y = Aa having (y)i =
i

j=1(a)j . Then, the
elements of y can be computed with DP by just continuously adding elements of y and storing the
intermediate results as the elements of y. Here we go from the trivial multiplication in O(mn) to
O(n) with DP.

Let’s consider a more complex example. Given A, B ∈ Rn,p, p ≪ n, x ∈ Rn, we want to
compute y = upperTriangular(AB⊤)x. Trivially, this is O(n2p) if we do the matrix multiplica-
tion first, the n set the lower triangle to zero and multiply with x. If we consider the special case
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p = 1 we would have O(n2). But in that case we can perform a matrix factorization of ab⊤ so
that we can benefit from cumulative summation.

y = triu(ab⊤)x =





a1b1 a1b2 . . . . . . a1bn

0 a2b2 a2b3 . . . . . . a2bn
...

. . . . . . . . .
...

. . . . . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 anbn









x1
...

...
xn





=





a1
. . .

. . .
an













1 1 . . . . . . 1
0 1 1 . . . . . . 1
...

. . . . . . . . .
...

. . . . . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 1













b1
. . .

. . .
bn









x1
...

...
xn













Here we then have two scalings and one reverse summation. All can be done in O(n). So we
have O(n) instead of O(n2) by utilizing hidden summations.

This then can also be generalized to p > 1 by recognizing that AB⊤ =
p

l=1(A):,l(B)⊤
:,l and

that the triangular operation is linear. So:

triu(AB⊤)x =
p

l=1
triu((A):,l(B)⊤

:,l)x

The inner computation can be done in O(n) as above. With the p summands we then get O(np)
instead of O(n2p) originally.

If an arithmetic expression can be rewritten to contain a matrix with all ones in the upper
triangle, one can often use this to reduce a matrix multiplication to O(n).
Also, matrix-vector multiplications with diagonal matrices are just scalings which can be
done in O(n).

Reuse of Intermediate Results .

Definition Kronecker Product: The Kronecker product A ⊗ B of two matrices A ∈ Km,n

and B ∈ Kl,k, m, n, l, k ∈ N is the (ml) × (nk)-matrix

A ⊗ B =





(A)1,1B (A)1,2B . . . . . . (A)1,nB

(A)2,1B (A)2,2B
...

...
...

...
(A)m,1B (A)m,2B . . . . . . (A)m,nB




∈ Kml,nk

With A, B ∈ Rn,n and x ∈ Rn2
we can compute y = (A ⊗ B)x. Trivially this can be done
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in O(n4). But the product reveals that some parts re-reused:

(A ⊗ B)x =





(A)1,1Bx1 + (A)1,2Bx2 + · · · + (A)1,nBxn

(A)2,1Bx1 + (A)2,2Bx2 + · · · + (A)2,nBxn

...

...
(A)m,1Bx1 + (A)m,2Bx2 + · · · + (A)m,nBxn





, x =





x1

x2

...
xn




, xi ∈ Rn

The idea is to precompute Bxl, l = 1, ..., n, because those factors are roused n times each:
Z = B


x1, ..., xn


= [Bx1, ..., Bxn]. The precomputation can be done in O(n3).

For one line of (A⊗B)x we compute (A)1,1Bx1 +(A)1,2Bx2 + ...+(A)1,nBxn = Z(A)⊤
1,:

in O(n2). If we compute all lines we get Y = ZA⊤ which can then be done in O(n3). In the end,
we must reshape to get the result:

y =




(Y):,1

...
(Y):,n



 ∈ Rn2

This is also straightforward to implement in C++:

1 template <class Matrix, class Vector>
2 Vector kronmultv(const Matrix &A, const Matrix &B, const Vector

&x){
3 unsigned int m = A.rows(); unsigned int n = A.cols();
4 unsigned int l = B.rows(); unsigned int k = B.cols();
5 // 1st matrix mult. computes the products Bxj

6 // 2nd matrix mult. combines them linearly with the
coefficients of A

7 Matrix t = B * Matrix::Map(x.data(),k,n) * A.transpose();
8 return Matrix::Map(t.data(), m*l, 1);
9 }

2.3 Machine Arithmetic and Consequences

From Linear Algebra we are already familiar with the Gram-Schmidt algorithm to find an orthogo-
nal basis for some vector space given some non-orthogonal basis. The algorithm outputs an orthog-
onal basis. Meaning, they are pairwise orthogonal and have norm 1. With Q =


q1 . . . qn



we then have Q⊤Q = I.

Listing 7: Gram-Schmidt Algorithm

1 template <class Matrix> Matrix gramschmidt(const Matrix &A) {
2 Matrix Q = A;
3 // First vector just gets normalized
4 Q.col(0).normalize();
5 for (unsigned int j = 1; j < A.cols(); ++j) {
6 // Replace inner loop over each previous vector in Q with

fast
7 // matrix-vector multiplication
8 Q.col(j) -= Q.leftCols(j) * (Q.leftCols(j).adjoint() * A.col

(j));
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9 // Normalize vector, if possible.
10 // Otherwise colums of A must have been linearly dependent
11 if (Q.col(j).norm() <= 10e-9 * A.col(j).norm()) {
12 std::cerr << "Gram-Schmidt failed: A has lin. dep columns.

" << std::endl;
13 break;
14 } else {
15 Q.col(j).normalize();
16 }
17 }
18 return Q;
19 }

But if we run this implementation on A =


1
i+j−1

n

i,j=1
∈ Rn,n (called Hilbert Matrix), we

get Q with Q⊤Q ∕= I! Thus, something must have went wrong.
The reason is that computers can’t compute with real numbers directly. Instead, they work

with an abstraction of machine numbers. Computing with those only approximates real numbers
and, thus, we incur errors in most computations. There are certain situations in which those errors
become severe. We will consider those (and how to avoid them) below.

2.3.1 Machine Numbers

Computers store real numbers as floating point numbers. This representation (other than real
numbers) is finite. We compute with machine numbers M instead of real numbers R. Hence, the
result of numerical Linear Algebra may differ noticeably from theoretical Linear Algebra.

There are three major error sources with machine numbers:

• Overflow: If some (intermediate) result after rounding is larger than the largest encodable
number, we get infinity.

• Underflow: If some (intermediate) result after rounding is smaller than the smallest non-zero
number, we get zero.

• Roundoff: There are gaps in between machine numbers as computers work with discrete
numbers. This leads to roundoff errors if a result is between to machine numbers.

2.3.2 Roundoff Errors

We already mentioned that some real numbers can’t be expressed precisely as machine numbers.
More formally, elementary arithmetic operations such as +, −, ∗, /, ... are not closed with respect
to machine numbers. Accordingly, we can’t use those operations with machine numbers. Instead
we consider modified operations, which round the results to machine numbers: õp := rounding ◦
op.

Definition Rounding Up: Correct rounding (”rounding up”) is given by the function

rd :

R → M
x → max argminx̃∈M|x − x̃|

12



This is what we consider here. But modern x86 machines round to the closest even number if
we are exactly in between two machine numbers.

The error we incur can be precisely defined:

relative error of rd=̂ |õp(x, y) − op(x, y)|
|op(x, y)| = |(rd − ld)op(x, y)|

|op(x, y)|

The precision of machine numbers may vary between machines and different floating point
types (floats, doubles, ...). But the machine precision is generally given by

max
x∈|M|

|rd(x) − x|
|x| =: ESP ≈ 2.2 · 10−16 for double ⇒ rd(x) = x(1 + ), || ≤ ESP

Notice that there is a difference between normalized and denormalized values (compare SPCA
for distinguishing those two types). For normalized values, we can get the precision simply by
considering the smallest value so that when added to 1 results in a number ∕= 1. This is considered
the machine epsilon/precision, although we have worse precision for denormalized values.

In C++, we can access the epsilon with std::numeric_limits<double>::epsilon
();.

Listing 8: Gram Schmidt roundoff - simple vs. QR

1 void gsroundoff(MatrixXd& A){
2 // Gram-Schmidt orthogonalization of columns of A
3 MatrixXd Q = gramschmidt(A);
4 // Test orthonormality of columns of Q, which should be an
5 // orthogonal matrix according to theory
6 cout << setprecision(4) << fixed << "I = " << endl << Q.

transpose()*Q << endl;
7 // Eigen’s stable internal Gram-Schmidt orthogonalization by
8 // QR-decomposition (discussed later)
9 HouseholderQR<MatrixXd> qr(A.rows(),A.cols());

10 qr.compute(A); MatrixXd Q1 = qr.householderQ();
11 // Test orthonormality
12 cout << "I1 = " << endl << Q1.transpose()*Q1 << endl;
13 // Check orthonormality and span property
14 MatrixXd R1 = qr.matrixQR().triangularView<Upper>();
15 cout << scientific << "A-Q1*R1 = " << endl << A-Q1*R1 << endl;
16 }

This shows that roundoff errors are significant. But by using special implementations and opti-
mizing programs for roundoff, one can mitigate their impact. Here, through the QR-factorization,
we avoid roundoff errors.

2.3.3 Cancellation

Roundoff by itself is just a phenomenon. But cancellation is how this phenomenon impacts com-
putations in a bad way. Cancellation describes the phenomenon how even tiny relative errors can
amplify through multiple computations to huge errors. Thus, even small errors can be destructive.

Cancellation occurs when subtracting (adding with different sign) two numbers. During this
process the existing errors in the operands remain, while the actual number becomes almost zero.
Then, the relative error usually becomes very big, even if we don’t introduce any new error or even
reduce the absolute error.

13



Figure 2: Cancellation - small relative error becomes large relative error

So cancellation occurs when we have subtraction (or addition with negative summand). If we
afterwards multiply with a large value or divide with a small value, we blow up the value so that
the error becomes a large absolute error.

Example Root of 2nd Degree Polynomial: We use the discriminant formula to compute
the roots of a square polynomial:

1 Vector2d zerosquadpol(double alpha, double beta) {
2 Vector2d z;
3 double D = std::pow(alpha, 2) - 4 * beta;
4 if (D < 0)
5 throw "no real zeros";
6 else {
7 // The famous discriminant formula
8 double wD = std::sqrt(D);
9 z << (-alpha - wD) / 2, (-alpha + wD) / 2;

10 }
11 return z;
12 }

With p(x) = x2 + (y + 1
y )x + 1 = (x − y)(x − 1

y ) we have the two roots y and 1
y . But

when using this function, we get small relative errors with y but very high relative errors
for 1

y .
With roundoff, we easily understand the small relative errors for y. The large relative errors
with 1

y come from cancellation, because the result is very close to zero after subtraction in
the term -alpha + wD.

Now we can also understand why the Gram Schmidt algorithm is vulnerable to cancellation.
While subtracting the projections on existing orthogonal basisvectors, we incur cancellation as the
resulting vector may be small with a large relative error. But normalization then blows up the large
relative/small absolute error to also be a large absolute error.
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Example Cancellation in Difference Quotient: Consider f : R → R being smooth and
f ′(x) ≈ f(x+h)−f(x)

h for h ≪ 1. f(x + h) − f(x) will be almost zero with a high relative
error then. And if h is almost, then be blow up the high relative error but absolutely small,
to a large absolute error.

1 void diffq() {
2 double h = 0.1, x = 0.0;
3 for (int i = 1; i <= 16; ++i) {
4 double df = (exp(x + h) - exp(x)) / h;
5 cout << setprecision(14) << fixed;
6 cout << setw(5) << -i << setw(20) << abs(df - 1) << endl

;
7 h /= 10;
8 }
9 }

log10(h) relative error
-1 0.05170918075648
-2 0.00501670841679
-3 0.00050016670838
-4 0.00005000166714
-5 0.00000500000696
-6 0.00000049996218
-7 0.00000004943368
-8 0.00000000607747
-9 0.00000000827403
-10 0.00000000827403
-11 0.00000000827403
-12 0.000008890058234
-13 0.000079927783736
-14 0.000079927783736
-15 0.11022302462516
-16 1.00000000000000

Figure 3

This figure shows that the relative error first becomes small. But for very small h, the
relative error becomes large again due to cancellation.
It can be mathematically shown that the best choice of h is ≈

√
EPS.

Numerical codes vulnerable to cancellation are mostly useless.

To test for cancellation, we usually need to check if some value is ’almost’ zero (the result
and divisor to avoid blowing up the error).
Do NOT do so by testing ==0. Instead, test for relative smallness!
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2.3.4 Avoiding Cancellation

Now it is obvious that we want to avoid cancellation. We can’t give one general method to avoid
cancellation. But there are multiple techniques of which we will highlight a few.

Changing the Computation Here, we consider the example of findings the roots of a square
polynomial of earlier. Vieta’s theorem tells us that x1 ·x2 = β. Thus, it is sufficiently to accurately
compute only one of x1 and x2. Then, we get the other through β

xi
.

For the first root, we can use the discriminant formula. But only use it to compute the large
solution, which we can compute accurately as seen in the above example.

1 Eigen::VectorXd zerosquadpolstab(double alpha, double beta) {
2 Eigen::Vector2d z(2);
3 double D = std::pow(alpha, 2) - 4 * beta; // discriminant
4 if (D < 0)
5 throw "no real zeros";
6 else {
7 double wD = std::sqrt(D);
8 // Use discriminant formula only for zero far away from 0
9 // in order to void cancellation. For the other zero

10 // use Vieta’s formula.
11 if (alpha >= 0) {
12 double t = 0.5 * (-alpha - wD);
13 z << t, beta / t;
14 } else {
15 double t = 0.5 * (-alpha + wD);
16 z << beta / t, t;
17 }
18 }
19 return z;
20 }

Rewriting Expressions With many expressions, we can perform some trivial arithmetic trans-
formations to get a form not vulnerable to cancellation. We consider two kind of common trans-
formations:

•
 x

0 sin tdt = 1 − cos x. For x ≈ 0 we incur cancellation. But with trigonometric identities
we get = 2 sin2(x

2 ), which we can compute with higher accuracy also for small x.

• y =
√

1 + x2 −
√

1 − x2 has cancellation for small x. But with a neat trick we can use the
identity a2 − b2 = (a + b)(a − b):

(
√

1 + x2 −
√

1 − x2)(
√

1 + x2 +
√

1 − x2)√
1 + x2 +

√
1 − x2

= 2x2
√

1 + x2 +
√

1 − x2

This does not exhibit cancellation.

Trading Cancellation for Approximation Expressions exhibit cancellation only for certain val-
ues. For those, we can use the Taylor approximation to get an expression without cancellation. Of
course, the Taylor polynomial only is an approximation. However, this approximation may be
better compared to error through cancellation.
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For some smooth function f : R → R we know the Taylor polynomial holds for some ζ ∈
]x0, x0 + h[

f(x0 + h) =
m

k=0

f (k)(x0)
k! hk + f (m+1)(ζ)

(m + 1)! hm+1

We then simply disregard the additional term f (m+1)(ζ)
(m+1)! hm+1 to get an approximation. So that

we get a good approximation we must choose a sufficiently large m.

Example


eatdt:
I(a) =

 1
0 eatdt = ea−1

a exhibits cancellation for a ≈ 0.
Thus, we approximate ea −1 with its Taylor polynomial but leave the factor 1

a as it is. Then
we get

I(a) = exp(a) − 1
a

=
m

k=0

1
(k + 1)!a

k + 1
(m + 1)! exp(ζ)am+1, for some ζ ∈ [0, a]

We then just neglect Rm(a) to get an approximation. Here, we can also give an upper
bound for the relative error of this approximation:

relative error = |I(a) − Ĩm(a)|
|I(a)| =

ea−1
a −

m
k=0

1
(k+1)!a

k

ea−1
a

≤ 1
(m + 1)! exp(ζ)am+1 ≤ 1

(m + 1)! exp(a)am

We can compute the relative error depending on m for some given a. If we are interested
in a = 10−3 we get:

m 1 2 3 4 5
relative error 1.0010 · 10−3 5.0050 · 10−7 1.6683 · 10−10 4.1708 · 10−14 8.3417 · 10−18

Figure 4

Based on when the relative error is sufficiently small, we can start using the Taylor poly-
nomial approximation. The approximate number of correct digits can be identified with
log10(relative errot).
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3 Direct Methods for Linear Systems of Equations

3.1 Theory

Linear Systems of Equations were introduced in Linear Algebra. We have seen that those can be
expressed as

Ax = b

with A ∈ Rn,n and x, b ∈ Rn. A and b are given while x contains the unknowns to be found.
We may also consider As which are not square, but that is a less common case. Especially if want
that a solution exists.

The i-th equation for i = 1, ..., n of the LSE corresponds to (A)i,:x = (b)i.

Existence and Uniqueness of Solutions .

Definition Invertible Matrix: A ∈ Kn,n is invertible/regular :⇔ ∃B ∈ Kn,n : AB =
BA = I Then, B is called the inverse of A. We write B = A−1.

There are some equivalent criteria to test if some matrix A is invertible:

• det A ∕= 0

• columns or rows of A linearly independent

• N (A) = {z ∈ Kn|Az = 0} = {0} (trivial null space)

If A is invertible, then there exists a unique solution to a SLE Ax = b with arbitrary b as
x = A−1b ⇔ x=Bb.

DO NOT use matrix inversion to solve LSEs! Instead use the methods detailed later.

3.2 Gaussian Elimination (GE)

3.2.1 Basic Algorithm

Everything in this section should be known from Linear Algebra. We do successive row transfor-
mations to turn A into an upper triangular matrix. This is called forward elimination. Afterwards,
we perform back substitution. The details of this should be known and won’t be elaborated.

• forward elimination: O(n3)

• back substitution: O(n2)

Instead of considering Ax = b, we can also consider multiple right hand sides at once with
AX = B. This has runtime O(n3) · O(n) = O(n4).
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Block Gaussian Elimination Instead of considering all elements of A individually, we can also
consider blocks of A and blocked Gaussian elimination.


A11 A12 b1
A21 A22 b2


forward elimination−−−−−−−−−−→


A11 A12 b1

0 A22 − A21A−1
11 A12 b2 − A21A−1

11 b1



back substitution−−−−−−−−−→


I 0 A−1
11 (b1 − A12S−1bs)

0 I S−1bs



,

S = A22 − A21A⊤
11A12 is called the Schur complement

bS = b2 − A21A−1
11 b1

Considering blocked GE comes in handy for certain optimizations down the road.

3.2.2 LU-Decomposition

This is equivalent to Gaussian Elimination but written as a matrix factorization. This makes it
simpler to solve the same system for multiple right-hand sides - without runtime penalties.

Definition LU-Decomposition/-Factorization: Given a square matrix A ∈ Kn,n, an upper
triangular matrix U ∈ Kn,n and a normlized lower triangular matrix L ∈ Kn,n form an
LU-decomposition/LU-factorization of A, if A = LU.

Normalized L means here that the diagonal entries of L are all 1. This is necessary so that
the decomposition is unique for given A. The value of L and U can be acquired during GE
without additional cost. Computing the LU-Decomposition takes O(n3). This follows directly
from obtaining the coefficients from GE.

Solving LSE via LU We use the LU-Decomposition to solve an LSE.

Ax = B ⇔ L(Ux) = b
solve Lz = b for z
solve Mx = z for x

Thus, solving with LU can be split into three stages:

1. Compute LU-Decomposition: A = LU.
1
3n(n − 1)(n + 1) elementary operations

2. Forward Substitution: solve Lz = b.
1
2n(n + 1) elementary operations

3. Backward Substitution: solve Ux = z.
1
2n(n + 1) elementary operations

The setup phase (step 1) completes in O(n3). The elimination phase (step 1 & step 2) complete
in O(n2). Thus, for one solve, the runtime is the same as GE directly. But we can also solve for
multiple right-hand sides at an additional cost of O(n2) each.

If we consider multiple right-hand sides with AX = B, we get runtime O(n3) + O(n2) · n =
O(n3). This is better than GE directly!
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Block LU-Decomposition With the Schur complement S = A22 − A21A−1
11 A12 we have:


A11 A12
A21 A22



=


I 0
A21A−1

11 I

 
A11 A12
0 S



to get the LU-Decomposition.

3.2.3 Gaussian Elimination & LU-Decomposition in Eigen

We consider the system AX = B ∈ Rn,l with A ∈ Rn,n and X ∈ Rn,l.
In Eigen, we can compute the LU decomposition, i.e., perform phase 1 (setup phase/factoriza-

tion) on A with A.lu();. Then, we can use the resulting object to perform phrase 2 (elimination)
on a vector or matrix with .solve(B);.

.lu(); is O(n3). And .solve(B); is O(n2 · l).

Generally, use good implementations from Eigen or other numerical libraries. Creating a
performant implementation oneself while considering caching, architecture optimizations,
etc. is very difficult!

To benefit from LU, make sure to reuse the LU object whenever possible.

Listing 9: How to use LU in Eigen - bad code - O(Nn3)
1 for (int j = 0; j< N; ++j) {
2 x = A.lu().solve(b);
3 b = some_function(x);
4 }

Listing 10: How to use LU in Eigen - good code - O(n3 + Nn2)
1 auto A_lu_dec = A.lu();
2 for(int j = 0; j< N; ++j) {
3 x = A_lu_dev.solve(b);
4 b = some_function(x);
5 }

3.2.4 Special Cases

Here we consider two cases in which we can use a special approach to improve runtime. Specifi-
cally, we utilize the special structure of matrices to be able to use block LU form above.

Definition Sherman-Morrison-Woodbury Formula: For regular A ∈ Kn,n, and U, V ∈
Kn,k, n, k ∈ N, k ≤ n, holds:

(A + UV H)−1 = A−1 − A−1U(I + V HA−1U)−1V HA−1

If I + V HA−1U is regular. UV H is a general rank k matrix.

LSE with Arrow Matrix Here we want to compute the LU-Decomposition of an arrow matrix.
An arrow matrix is a matrix A ∈ Rn,m with (A)ij = 0 ⇔ (i ∕= j) ∧ (i ∕= n) ∧ (j ∕= m). The
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resulting matrix then looks like an arrow that points to the bottom right.




? 0 0 · · · 0 ?
0 ? 0 · · · 0 ?
0 0 ? · · · 0 ?
...

...
...

. . .
...

...
0 0 0 · · · ? ?
? ? ? · · · ? ?





=


D c
b⊤ α



where D is a diagonal matrix.
When D is given by its diagonal and the other vectors and constants are given in obvious

form, constructing the matrix and solving for some right-hand side y as introduced above leads to
a runtime of O(n3). But this matrix has a special form so that we can optimize the runtime. We
use block GE.

Block GE works well here, because it is easy to invert D. We can do so in O(n). We just
apply block GE as introduced above and get:

Ax =


D c
b⊤ α

 
x1
ζ



= y :=


y1
η



ζ = η − b⊤D−1y1
α − b⊤D−1c

x1 = D−1(y1 − ζc)

Remember to check that the denominator is ∕= 0. But besides that we can perform those
evaluations in O(n) - a significant runtime improvement.

This comes at the cost of decreased numerical stability. This is more vulnerable to roundoff/-
cancellation. But it is only relevant in edge cases.

Listing 11: Arrow Matrix Solve

1 VectorXd arrowsys_fast(const VectorXd &d, const VectorXd &c,
const VectorXd &b, const double alpha, const VectorXd &y) {

2 int n = d.size();
3 VectorXd z = c.array() / d.array();
4 VectorXd w = y.head(n).array() / d.array();
5 const double den = alpha - b.dot(z);
6 // this is a safe test for approximate equality to 0.0
7 if(std::abs(den) < std::numeric_limits<double>::epsilon() * (b

.norm() + std::abs(alpha))) {
8 throw std::runtime_error("Near singular system");
9 }

10 const double xi = (y(n) - b.dot(w)) / den;
11 return (VectorXd(n+1) << w - xi * z, xi).finished();
12 }

Rank-1 Modifications Assume that solving Ax = b is easy to solve (having LU-Decomposition,
special structure of A, ...). Then we will see that solving Ãx̃ = b is comparatively easy if Ã is a
low-rank modification of A. A low-rank modification of A is Ã = A + M′, where M ′ has a low
rank. Here, we consider rank-1 modifications specifically, i.e., M ′ has rank 1. Any rank 1 matrix
can be represented as uv⊤ with u, v ∈ Rn. One common such low-rank modification is to only
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alter one entry of the matrix A to get Ã. This can be done, because such a rank-1 modification
matrix can be easily constructed as z · ei · e⊤

j .
We use block GE to solve this more efficiently:


A u
v⊤ −1



·

x̃
ζ



=

b
0



From row 2 we get ζ = v⊤x̃. With that from the first row follows (A + uv⊤)x̃ = b. This
shows that solving for x̃ would solve our rank-1 modified LSE.

When solving row 1 directly by itself, we get x̃ = A−1(b − ζu). Inserting that into the equa-
tion for row 2 yields ζ = v⊤A−1(b − ζu). Solving for ζ leads to ζ = v⊤A−1b

1+v⊤A−1u . Alternatively,
this is directly corresponds to the formulas from Block GE.

Then, we insert the solution for ζ into the equation for x̃ or use the Block GE formulas to get:

x̃ = A−1b − A−1u(vH(A−1b))
1 + vH(A−1u)

This can then be solved by only solving for systems with A, i.e., to compute A−1b and A−1u.
Applying this method involves checking that the denominator is ∕= 0 (in a numerically stable

way!). That corresponds to near singular systems.

1 template <class LUDec>
2 Eigen::VectorXd smw(const LUDec &lu, const Eigen:VectorXd &u,

const Eigen::VectorXd &v, const Eigen::VectorXd &b) {
3 const Eigen::VectorXd z = lu.solve(b); // z = A−1b, O(n2)
4 const Eigen::VectorXd w = lu.solve(u); // w = A−1u, O(n2)
5 double alpha = 1.0 + v.dot(w);
6 double beta = v.dot(z);
7 if (std::abs(alpha) < std::numeric_limits<double>::epsilon() *

std::abs(beta))
8 throw std::runtime_error("A nearly singular");
9 else

10 return (z - w * beta / alpha);
11 }

If we can easily solve systems with A, i.e., in O(n2) through LU, this has runtime only O(n2).
But we pay a price with worse numeric stability.

Low Rank Modification We can generalize this approach to higher rank modifications.

Theorem Sherman-Morrison-Woodbury Formula: For regular A ∈ Kn,n, and U, V ∈
Kn,k, n, k ∈ N, k ≤ n, holds:

(A + UV H)−1 = A−1 − A−1U(I + V HA−1U)−1V HA−1

If I + V HA−1U is regular. UV H is a general rank k matrix.

3.3 Sparse Linear Systems

With general LSE solve methods we consider all matrices. This means we consider dense matrices
in which all entries are relevant/contain information. But in many cases we know, for instance,
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that certain elements will be zero. In certain such cases we can exploit this special structure to do
certain computations faster.

Example:
Simulating circuits requires modeling them as matrices. The number of non-zero entries is
proportional to the nodes, which the matrix size is quadratic in the number of nodes. Thus,
most entries will be zero for large matrices.
Large real-world graphs/networks often also exhibit a lot of zeros.

3.3.1 Sparse Matrix Storage Formats

First and foremost, if most entries are known to be zero, it is wasteful to store all those zeros.
Thus, we have special storage formats for sparse matrices to avoid such wasteful use of memory.
We have multiple goals:

• Memory use should be proportional to the number of non-zero entries instead of the number
of total entries.

• The cost of a matrix vector multiplication should be linear in the number of non-zero entries
instead of O(nm).

A common side benefit is that we can easily obtain information about the location of non-zero
entries.

COO/triplet format We store A as a list of tuples (i, j, value). We allow i, j pairs to be re-
peated so that multiple values sum up to the final value for some position in the matrix: (A)i,j =

k,A[k].i=i,A[k].j=j
A[k].a. Adding matrices then becomes very easy. It is just a matter of concate-

nation. Multiplication is not much more difficult - compare the below C++ implementation.

1 struct Triplet {
2 size_t i;
3 size_t j;
4 scalar_t a;
5 }
6 using TripletMatrix = std::vector<Triplet>;
7

8 void multTriplMatvec(const TripletMatrix &A, const vector vector
<scalar_t> &x, vector<scalar_t> &y) {

9 for (size_t i=0; i<A.size(); i++) {
10 y[A[i].i] += A[i].a*x[A[i].j];
11 }
12 }

COO is still quite wasteful, because we store indices for every element and may even store
indices repeatedly.

Compressed Row Storage (CRS) CRS is a bit more sophisticated (but also more complex).
Notice that we also distinguish between row and column majority here. As Eigen is column major,
we will consider the column major version. Then, we would name this paragraph Compressed
Column Store to be more accurate.

We store three vectors here :
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• std::vector<scalar_t> val of size #non-zero-entries of A.

It contains the non-zero values of the matrix in column-major order. This vector stores the
actual data while the other two are used for specifying their position in the matrix.

• std::vector<size_t> row_ind of size #non-zero-entries of A.

For each index k, this stores the row of the entry in the ‘val‘ vector.

• std::vector<size_t> col_ptr of size n + 1.

row_ptr[i] stores the position/index of the first non-zero entry of row i of the matrix
in the vector val. Additionally, we have the sentinel value row_ptr[n+1]=non-zero-
etnries of A+1 for computational reasons.

val[k] = aij ⇔


row ind[k] = i,

col ptr[j] ≤ k ≤ col ptr[j + 1],
1 ≤ k ≤ nnz(A)

If some columns only contain zeroes, their col_ptr entries just point to the first element of
the next column with non-zero entries. Then, at least two col_ptr entries point to that element.

3.3.2 Sparse Matrices in Eigen

Eigen relies mostly on the Compressed Column Storage (CCS) format. We use Eigen::SparseMatrix
for CCS:

1 #include<Eigen/Sparse>
2 Eigen::SparseMatrix<double, Eigen::ColMajor> Asp(rows,cols); //

CCS
3 Eigen::SparseMatrix<double> Asp(rows,cols); // CCS
4 Eigen::sparseMatrix<double, Eigen::RowMajor> Bsp(rows,cols); //

CRS

The difficult part is initialization. Just setting entries in random order and with an unknown
number of entries leads to bad performance, because the data structure needs to be resizes multiple
times involving massive data movement.

Listing 12: SparseMatrix Adding One-By-One without Reservation

1 unsigned int rows, cols;
2 SparseMatrix<double, rowMajor> mat(rows,cols);
3 // do many (incremental) initializations
4 for( /* ... */) {
5 // insert or modify, may involve relocation/resizing
6 mat.insert(i,j) = value_ij;
7 mat.coeffRef(i,j) += increment_ij;
8 }
9 mat.makeCompressed(); // reduce data structure size overhead

Of all option, the just given trivial version is probably the worse. The two following ap-
proaches have better runtime performance - specifically O(n). But the latter has even better con-
stants than the former.
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Intermediate COO/triplet format Alternatively, we can first create a vector of triplets and then
initialize the sparse matrix based on those triplets. This has runtime O(n) with n being the number
of triplets.

Listing 13: SparseMatrix Initialization from Triplets

1 std::vector <Eigen::Triplet <double>> triplets;
2 // .. fill the std::vector triplets
3 Eigen::SprarseMatrix<double, Eigen::RowMajor> spMat(rows,cols);
4 spMat.setFromTriplets(triplets.begin(),triplets.end());

SparseMatrix Adding One-By-One with Reservation Here, we reserve space for a certain
number of entries per row when creating the sparse matrix data structure. Then, we can insert and
modify elements with constant cost.

Listing 14: SparseMatrix Adding One-By-One with Reservation

1 unsigned int rows, cols, max_no_nnz_per_column;
2 SparseMatrix<double, rowMajor> mat(rows,cols);
3 mat.reserve(RowVectorXi::Constant(cols,max_no_nnz_per_row)); //

allocate enough space here
4 for( /* ... */) {
5 // O(1) each if enough space reserved
6 mat.insert(i,j) = value_ij;
7 mat.coeffRef(i,j) += increment_ij;
8 }
9 mat.makeCompressed(); // reduce data structure size overhead

3.3.3 Direct Solution of Sparse Linear Systems of Equations

When working with sparse matrices, always use the appropriate data structures. Otherwise, library
functions don’t know that we work with sparse matrices or would struggle to identify zero elements
- as being zero is measured by being almost zero to have numerically stable programs.

In this section we won’t dive into the details of the algorithms but only see how to apply
them. This is as solving sparse linear systems is an active field of research and the algorithms are
very complex. But one should be able to use the algorithms and know about their performance
(tradeoffs).

The Eigen library provides a SparseLU solver. This can be used just as the regular LU-
Decomposition in the two steps of factorization and elimination. But we must check whether the
solve was successful. It may be that we have a singular matrix or an obscure matrix structure
prevents the solver in Eigen to function properly. We can’t specify a runtime, because the perfor-
mance heavily depends on the matrix structure and the algorithm implemented by the library.

Listing 15: Sparse LU

1 using SparseMatrix = Eigen::SparseMatrix<double>;
2 void sparse_solve(const SparseMatrix &A, const VectorXd &b,

VectorXd &x) {
3 Eigen::SparseLU<SparseMatrix> solver(A);
4 if (soler.info() != Eigen::Success)
5 throw "Matrix factorization failed";
6 x = solver.solve(b);
7 }
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Solving Sparse Systems - Performance Tradeoffs We have seen the arrow matrix above. Using
that sparse matrix, this demonstrates the performance difference of various approaches:

Figure 5

We see that going from the slow to the SparseLU approach leads to significant performance
improvements. This exploits the basic knowledge about some sparse structure. Then, through
further optimizations based on knowledge about the specific matrix structure, we can improve the
performance even further.

In many cases, we choose the SparseLU approach over specialized versions, because of the
usually higher numerical stability in library implementations.

While the runtimes of sparse solvers depends on the specific matrix formats, they usually
perform better than dense solvers (regarding runtime). The cost of solving a sparse LSE Ax = b
is O(nα) in most cases, where n is the number of non-zero matrix entires and α ∈ [1.5, 2.5]
approximately.

Different algorithms applied to sparse symmetric positive definite matrices reveal an average
runtime of O(n1.5). Matrices, which have a less common/clear structure show worse performance
when applying sparse solvers.
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4 Direct Methods for Linear Least Squares Problems

Linear Least Squares Problems have already been introduced in Linear Algebra. They are of great
relevance in many applications such as machine learning, imaging science, data science, etc. We
will discuss the theory and numerical approaches to solving them here.

Linear Least Squares Problems arise from the desire to solve overdetermined LSEs. Meaning,
LSEs which have more linearly independent equations than unknowns. The system matrices of
overdetermined LSEs are tall, i.e., A ∈ Rm,n with m > n. We must generalize the concept of
solving LSEs to also consider such cases.

Examples of Overdetermined Linear Systems of Equations - Motivation .

Example Linear Parameter Estimation in 1D: We propose a physical law y = αx + β
but don’t know α nor β. Thus, we perform measurements (xi, yi) ∈ R2, i = 1, ..., n. Our
intuition tells us: We want to perform as many measurements as possible (n ≫ 2) and
get the average of our measurements to reduce the error. Solving the Linear Least Squares
Problem corresponds to finding the solution for α and β that best fits all our measurements.
In this case, the system would look like this:





x1 1
x2 1
...

...
xm 1






α
β



=





y1
y2
...

ym





The principle we see from this initial example is: One cannot afford not to use all available
information.

Example Linear Regression - Linear Parameter Estimation:
This is a generalization of the before described parameter estimation to multiple dimen-
sions. Our proposed law now is y = a⊤x + β. We want to identify a and β based on
our observations (xi, yi) ∈ Rn × R, i = 1, ..., n. If m > n + 1 and linearly independent
measurements, we have an overdetermined LSE with equations yi = a⊤xi + β, which
leads to this system:




x⊤

1 1
...

...
x⊤

m 1






a
β



=




y1
...

ym





Example triangles: Consider measuring the three angles of a triangle. With entirely
accurate measurements, this system has a solution:





1 0 0
0 1 0
0 0 1
1 1 1








α
β
γ



 =





α̃

β̃
γ̃
π





But through measurement errors we likely won’t be able to find a precise solution. But then,
we can reduce the variance of our measurements by applying a Least Squares Method to
find a solution minimizing the error across all four penalized properties.
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4.1 Least Squares Solutions Concepts

Definition Least Squares Solution: For given A ∈ Rm,n, b ∈ Rm the vector x ∈ Rn is a
least squares solution of the linear system of equations Ax = b, if

x ∈ argminy∈RnAy − b2
2 =: lsq(A, b)

⇔ Ax − b2
2 = min

y∈Rn
Ay − b2

2 = min
y1,...,yn∈R

m

i=1




n

j=1
(A)i,jyj − (b)i




2

Nice to know: We consider the square of the norm simply to not have the root, which is a
hassle to work with. We don’t hesitate to do so, because taking the square of all values doesn’t
change the minima.

This is a true generalization of solving invertible LSEs. We know that those have exactly one
solution. Thus, that solution is the only one which makes the squared norm 0. We get lsq(A, b) =
{A−1b} with A ∈ Rm,m being invertible.

Geometric Interpretation Consider R(A) ⊂ Rm = {Ax, x ∈ Rn}, which is a hyperplane
and the range of the linear projection A. The vector b ∈ Rm may not lie on that hyperplane but
somewhere else in Rm. So, there is no solution to the overdetermined system.

But we can draw the residual vector. It is the orthogonal projection x∗ of b onto the hyperplan
R(A), which corresponds to the smallest deviation from b of solutions x. Although visualization
usually show the projection in 3D onto a plane, don’t forget that the dimensional difference can be
higher so that multiple best projections exist. The solution is not guaranteed to be unique!

Figure 6

From this interpretation we can see that such a projection must always exist. Hence, the
minimum also exists and we can define least squares solutions which always exist via the minimum
and not the infimum.

4.1.1 Normal Equations

Here we learn how to recover least squares solutions by using a square system matrix, whose
solutions are the least square solutions.

Remember that the residual is orthogonal to R(A): r := b − Ax∗ ⊥ R(A). By applying the
mathematical definition of orthogonality, we get (Ay)⊤(b − Ax∗) = 0, ∀y ∈ Rn. Because this
does hold for all y, we can also write:

A⊤(b − Ax∗) = 0

28



Theorem Least Squares Solutions from Normal Equations: The vector x ∈ Rn is a least
squares solution of the linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm, if and
only if it solves the normal equations (NEQ)

A⊤Ax = A⊤b

The system matrix A⊤A is symmetric.
The normal equation system collapses to a small n×n system, which exhibits a unique solution

if invertible or otherwise all possible solutions.

”Formal” Derivation using Analysis We define J : Rn → R with J(y) := b − Ay2
2 and get

J(y) = y⊤A⊤Ay − 2b⊤Ay + b⊤b

=
n

i=1

n

j=1
(A⊤A)ijyiyj − 2

n

i=1

n

j=1
bi(A)ijyj +

m

i=1
b2

i

This is a multi-variate polynomial in y, i.e., J is smooth. So if we now consider some x∗ ∈ Rn

with x∗ ∈ argminx∈RnJ(x), we see that x∗ is a minima of J . Hence, the gradient must be zero:
∇J(x∗) = 0. Through partial differentiation:

∇J(x∗) =


∂J

∂yi
(y)

n

i=1
= 2A⊤Ay − 2A⊤b

Notice: This only shows that the Normal Equations are a necessary condition. That the condi-
tion is sufficient must be shown separately.

Uniqueness of LSQ Solutions .

Theorem Kernel and Range of A⊤A: For A ∈ Rm,n, m ≥ n holds

N (A⊤A) = N (A)
R(A⊤A) = R(A⊤)

Proof. First equality:

• z ∈ N (A) ⇒ z ∈ N (A⊤A)

• z ∈ N (A⊤A) ⇒ A⊤Az = 0 ⇒ z⊤A⊤Az = 0 ⇔ Az2 = 0 ⇔ Az = 0 ⇔ z ∈
N (A)

The proof of the second equality is analogously.

Corollary Uniqueness of Least Squares Solutions: If m ≥ n and N (A) = {0}, then
the linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm has a unique least squares
solution x = (A⊤A)−1A⊤b.

If N (A) ∕= {0}, then, we have infinitely many solutions, because there are linearly dependent
equations so that the system is actually underdetermined.
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The corollary easily follows from the fact that if N (A) = {0} we also have N (A⊤A) = {0}
from the earlier theorem. Then, A⊤A is regular and its LSE always has a unique solution.

The condition for the uniqueness of the Least Squares Solution is N (A) = {0}, which is
equivalent to A having full rank, i.e., rank(A) = n.

4.1.2 Moore-Penrose Pseudoinverse

If the full-rank condition is not satisfied (N (A) ∕= {0}), we cannot expect a unique solution to
a least squares problem. We now specify the minimal norm condition to always get one unique
solution of those many solutions.

Definition Generalized Solution of a Linear System of Equations: The generalized solu-
tion x† ∈ Rn of a linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm is defined
as

x† := argmin{x2 | x ∈ lsq(A, b)}

lsq(A, b) = {x ∈ Rn|A⊤Ax = A⊤b} is an affine subspace of Rn, which can be expressed
as lsq(A, b) = x0 + N (A⊤A) = x0 + N (A) with x0 ∈ lsq(A, b).

So, the affine subspace of lsq(A, b) is parallel to N (A). To find the element with minimal
norm form lsq(A, b), we need to find the element, whose vector is orthogonal to N (A). This is
as we know that the shortest distance between a point and a space is always there, where the direct
line is orthogonal on the space.

Figure 7

So, for x† must hold that x† ⊥ N (A) ⇔ x† ∈ N(A)⊥.
If {v1, ..., vk} is a basis of N (A)⊥ (k :)dimN (A)) we see that x† = Vy for some y ∈ Rk

where V = [v1, ..., vk] ∈ Rn,k.
From this we can extend the normal equations:

A⊤AVy = A⊤b
⇒ V⊤A⊤AVy = V⊤A⊤b

We show that V⊤A⊤AV is always regular. observing that Vx is not null if x is not null
because V is regular. But V spans the complement of the null space of A, so if x ∕= 0, Vx will
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orthogonal to every null vector of A. Hence, AVx ∕= 0. Thus, AVx = 0 if and only if x = 0.
This implies that N (AV) = {0} and AV is regular. This then quickly leads to V⊤A⊤ being
regular too.

When having found a solution for y, x† then is given by Vy. Thus, a unique solution for y
exists.

Theorem Moore-Penrose Pseudoinverse - Formula for Generalized Solution: Given A ∈
Rm,n, b ∈ Rm, the generalized solution x† of the linear system of equations Ax = b is
given by

x† = V(V⊤A⊤AV)−1(V⊤A⊤b)

where V is any matrix whose columns form a basis of N (A)⊥.
V(V⊤A⊤AV)−1V⊤A⊤ is called the Moore-Penrose Pseudoinverse of A.

4.2 Normal Equation Method

After having understood the theoretical foundation of Least Squares Problems, we now consider
algorithms for solving least squares problems numerically. Specifically, this section will discuss
the normal equations A⊤Ax = A⊤b. Here, we also assume that A satisfies the full-rank condi-
tion (FRC). Thus, also A⊤A is regular.

Definition Symmetric Positive Definite (s.p.d.) Matrices: M ∈ Kn,n, n ∈ N is symmetric
(Hermitian) positive definite (s.p.d) if (a) it is symmetric/hermitian:

M = MH

and (b) positive definite

∀x ∈ Kn : xHMx > 0 ⇔ x ∕= 0

If xHMx ≥ 0 for all x ∈ Kn, then M is positive semi definite.

A⊤A is also symmetric positive definite. This is of relevance, because such matrices can
be treated in a special ways which allows for further optimizations. Specifically, computing the
LU-Decomposition of a s.p.d. matrix can be done in Eigen with the function .ltt(), which is
slightly more efficient that .lu().

Proof. That C is symmetric is clear from A⊤A = (A⊤A)⊤.
And positive definiteness is also easy:

x⊤Cx = x⊤A⊤Ax = (Ax)⊤Ax = Ax2
2 > 0 ⇔ x ∕= 0

This last equivalence holds only because we assume the full-rank condition.

The basic algorithm to solve least squares problems based on the normal equations proceeds
in three steps:

1. Compute the regular matrix C := A⊤A ∈ Rn,n.

2. Compute the right hand side vector c := A⊤b.

3. Solve the s.p.d. LSE Cx = c.
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Listing 16: Solving Least Squares Problems with Normal Equations

1 VectorXd normeqsolve(const MatrixXd &A, const VectorXd &b) {
2 if (b.size() != A.rows())
3 throw runtime_error("Dimension mismatch");
4 VectorXd x = (A.transpose()*A).llt().solve(A.transpose()*b);
5 return x;
6 }

• A.transpose()*A is O(mn2)

• A.transpose()*b is O(mn)

• .llt()/.lu() is O(n3)

Thus, the total runtime is O(mn2 + n3). For some fixed n, this is linear in m.

Roundoff Errors Clearly this approach is impacted by roundoff in certain cases. We illustrate
this with

A =




1 1
δ 0
0 δ



 ⇒ A⊤A =

1 + δ2 1

1 1 + δ2



The following shows that 1 + δ2 with δ ≈
√

EPS becomes 1 in machine arithmetics, because
the relative error from 1 is smaller than EPS.

1 = (1 + δ2)(1 + ) ⇒  = δ2

1 + δ2 < EPS

Thus, for A⊤A we actually compute A⊤A =

1 1
1 1



on computers. This is a fatal error,

because now A⊤A is not regular and we can’t determine the least squares solution.

Extended Normal Equations If A is sparse, then A⊤A generally is not sparse. This becomes
a problem for large m and n, because the computational expense then is increased noticeably. But
there is a trick to avoid computing A⊤A: Extended normal equations.

Instead of considering the normal equations in their common form A⊤Ax = A⊤b, we take a
different but equivalent form: A⊤(b − Ax) = 0. This corresponds to two linear equations:

• r = b − Ax

• A⊤r = 0

We may express those in a LSE:


I A
A⊤ 0

 
r
x



=

b
0



The benefit is that if A is sparse, so is the new system matrix. However, the cost is the size:
Rm+n,m+n. But if this is sparse it may still be noticeably faster than the unextended approach.
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4.3 Orthogonal Transformation Methods (QR-Decomposition)

In this section we consider another approach to solving least squares problems. Specifically, we
will use the QR-Decomposition (introduced below) to perform the solve. But the general setting
is as before: We consider an overdetermined LSE Ax = b and assume the FRC for A so that the
least squares solution is unique.

Orthogonal Unitary Matrices Knowing about orthogonal and unitary matrix is the foundation
for the introduction of the QR-Decomposition below.

Definition Unary and Orthogonal Matrices:

• Q ∈ Kn,n, n ∈ N, is unary if Q−1 = QH

• Q ∈ Rn,n, n ∈ N, is orthogonal if Q−1 = Q⊤

Equivalent definition: Orthogonality/Unitarity of a matrix is equivalent to norm preserva-
tion.

Qx2 = x2, ∀x ∈ Rn

The original definition of T being orthogonal (unitary not mentioned every time from now
on) corresponds to x⊤T⊤Tx = x⊤y. The following shows that this is equivalent to Ty2 =
y2, ∀y ∈ Rn. For this, we only use the polarization identity: x⊤y = 1

2(x+y2
2−x2

2−y2
2).

(Tx)⊤(Tx) = 1
2(T(x + y)2

2 − Tx2
2 − Ty2

2) = 1
2(x + y2

2 − x2
2 − y2

2) = x⊤y

Thus, the equality holds if and only if x⊤T⊤Tx = x⊤y.

Equivalent definition: The columns of an orthogonal/unitary matrix form an orthonormal
basis of Rn.

4.3.1 Transformation Idea

Remember Gaussian Elimination. The idea behind GE is to transform the LSE so that one gets a
LSE which is easier to solve but equivalent regarding the solution(s). We want to do the same with
least squares problems, i.e., transform Ax = b to Ãx = b̃ so that (a) the least squares solution is
easy to compute and (b) the solution remains unchanged, i.e., lsq(A, b) = lsq(Ã, b̃).

First, we see that the desired form is also a triangular form. We want to transform A into upper
triangular form.
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Figure 8

Potential solutions for x will be measured based on the norm of the difference on the left side
of the figure (Ax − b2). But independent of the choice of x, the lower m − n components will
remain unchanged. Thus, we must optimize x so that the upper n components are minimal.

If we call the upper triangular rectangular submatrix of A matrix R, we have to solve the LSE
Rx = b1:n. Then, the upper n components are zero (the optimum) and the lower m − n can’t be
changed so that we have found an x which minimizes the norm of the given difference.

After having understood why upper triangular form makes solving the least squares problem
easy (it is reduced to a simple elimination in O(n2)) we are interested to find out how to transform
a given A and b into such easy to solve form.

While deriving the normal equations, we have seen that those minimize the residual vector
- specifically the norm of the residual vector. Thus, any transformations which leave the norms
unchanged, also maintain that the solution x has the smallest residual vector. This means that our
transformations must leave the norm  · 2 unchanged.

Now we remember orthogonal and unitary transformations from above. Those are character-
ized by preserving the norm. Thus, we want to perform transformations using orthogonal matrices
to transform A into upper triangular form. In the next sections we see how this can be done.

If we have a transformation matrix T ∈ Rm,m satisfying Ty2 = y2 for all y ∈ Rm,
then:

lsq(A, b) = argminy∈RnAy − b2 = argminy∈RnÃy − b̃2 = lsq(Ã, b̃)

4.3.2 QR-Decomposition

When having done GE, we collected the elements of L throughout the process and U as the result
of transformations. So, GE provided the LU-Decomposition as a side effect. Similarly, we may
obtain the QR-Decomposition when performing the correct orthogonal transformations. We will
now consider how that can be done.

The basic algorithm from Linear Algebra which provides the QR-Decomposition is the Gram-
Schmidt algorithm, which orthonormalizes linearly independent vectors {a1, . . . , a2} ⊂ Rm, m ≥
n.

Listing 17: Gram Schmidt Algorithm Pseudocode

1 q1 := a1

a12
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2 for j = 2, ..., n do
3 {
4 qj := aj

5 for l = 1, 2, ..., j − 1 do

6 { qj = qj − 〈aj , ql〉ql; }
7 if (qj = 0) then STOP

8 else {qj = qj

qj2
; }

9 }

Theorem Span Property of Gram Schmidt Vectors: If {a1, ..., an} ⊂ Rm is linearly
independent, then the Gram Schmidt Algorithm computes orthonormal vectors q1, ..., qn ∈
Rm satisfying

span{q1, ..., ql} = span{a1, ..., al}

for all l ∈ {1, ..., n}.

Orthonormal means: (qi)⊤qj = δij . So the vectors are pairwise orthogonal and have norm 1.
We can collect the n computed vectors q1, . . . , qn and the n vectors a1, . . . , an from which we
construct two matrices:

Q :=

q1 . . . qn


∈ Rm,n

A :=

a1 . . . an


∈ Rm,n

As Q has orthonormal columns, Q is unitary/orthogonal as introduced before. Hence, we
notice that Q⊤Q = I.

Generally, we know that any vector qi can be written as a linear combination of the column
vectors of A, because Q and A span the same space. From the Gram Schmidt algorithm follows
that to express ql we even only need the first l column vectors of A.

ql =
l

i=1
tilai with l = 1, ..., n

• q1 = t11a1

• q2 = t12a1 + t22a2

• q3 = t13a1 + t23a2 + t22a3

...

• qn = t1na1 + t2na2 + · · · + tnnan

We may define T ∈ Rn,n as (T)ij :=


tij , i ≤ j

0, else
. Then it holds that Q = AT and we see

that T is an upper triangular matrix.
Because we assume the full rank condition to hold for A in this whole section as stated in

the beginning, we know that rank(A) = n. Because A and Q span the same space, we have
rank(Q) = n too. Thus, the transformation T cannot reduce the number of dimensions and must
be regular. Less formally, it can also be seen by intuition that from the linear independence of the
vectors and the Gram Schmidt algorithm follows that tii ∕= 0 for all valid i.
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Lemma Group of (Regular) Diagonal/Triangular Matrices: If A, B are diagonal/upper
triangular/lower triangular, then: AB and A−1 (assuming A is regular) are also diago-
nal/upper triangular/lower triangular.

With T being invertible and upper triangular, we see that A = QT−1 and T−1 is upper
triangular. Thus, we have a decomposition of A as an orthogonal and upper triangular matrix. If
we define R := T−1 we get the economical QR-Decomposition:

A = QR, A ∈ Rm,n, Q ∈ Rm,n, R ∈ Rn,n

Figure 9

We can extend the Q matrix with m − n additional orthogonal vectors. If we also extend R
to the bottom with zeros so that it has height m, the equality with A still holds. Then we have the
full QR-Decomposition:

A = Q̃R̃, A ∈ Rm,n, Q ∈ Rm,m, R ∈ Rm,n

Figure 10
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Theorem QR-Decomposition: For any matrix A ∈ Kn,k with rank(A) = k there exists

• a unique matrix Q0 ∈ Rn,k that satisfies QH
0 Q0 = Ik, and a unique upper triangular

matrix R0 ∈ Kk,k with (R)i,i > 0, i ∈ {1, ..., k} such that

A = Q0 · R0

• a unitary Matrix Q ∈ Kn,n and a unique upper triangular matrix R ∈ Kn,k with
(R)i,i > 0, i ∈ {1, ..., n}, such that

A = Q · R

If K = R all matrices will be real and Q then is orthogonal. Otherwise, Q is unitary.

Corollary Uniqueness of QR-Decomposition:
As implicitly stated in the before theorem: The economical QR-Decomposition of A ∈
Km,n, m ≥ n with rank(A) = n is unique, if we demand (R0)ii > 0 for all i = 1, ..., n.

Proof. If A has full rank n, then R must be regular. Remember that the upper triangular matrices
form a group under multiplication as stated in above. We will assume that two decompositions
exist and see that the two decompositions must then be equal.

Q1R1 = Q2R2 ⇒ Q1 = Q2R with R := R2R−1
1

I = QH
1 Q1 = RHQH

2 Q2R = RHR

From some Lemma about the Cholesky Decomposition then follows that R must be unique.
Specifically, R = I so that then R2 = R1.

4.3.3 Computation of QR-Decomposition

In the previous section we used the Gram Schmidt algorithm to derive the QR-Decomposition. But
that algorithm is numerically very unstable and introduces very large errors. Thus, we consider
some numerically stable approaches here.

The basic idea is to do iterative steps on A through orthogonal transformations (OTs) which
preserve the norm to turn it into an upper triangular matrix. With each OT, we get closer to
the desired upper triangular form. In the end, we can combine all OTs to one single orthogonal
transformation (justified with following corllary) and get Q∗A = R from which we can form the
QR-Decomposition A = (Q∗)−1R.

Corollary Composition of Orthogonal Transformations: The product of two orthogonal/u-
nitary matrices of the same size is again orthogonal/unitary.

We will discuss two approaches to get such orthogonal transformations to reach an upper trian-
gular form: Householder reflections and Givens rotations. This uses the realization that orthogonal
matrices (as being invertible) correspond to full-rank linear transformations. Furthermore, their
specific structure implies that they correspond to rotations, reflections, and arbitrary combinations
of those. With Householder reflections, we perform many consecutive reflections and with Givens
rotations we perform many consecutive rotations.
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Let’s consider the 2D case to illustrate what needs to be done. Given some A =

a1 b1
a2 b2



,

we want to apply some orthogonal transformation Q so that we get Q

a b


=


∗ ∗
0 ∗



. If we

consider Householder reflections, we need to find a reflection so that a is reflected onto the x-axis.
And if we consider Givens rotations, we need to find a rotation so that a is rotated onto the x axis.

Figure 11: Rotation

If we want R to be in its unique form with (R)ii > 0 for all valid i, we must always map on
the x-axis in the direction of the unit vector e1.

Householder Refelctions This generalizes the approach by using reflections from 2D to arbi-
trarily many dimensions. If we have some vector a and find a reflection so that a is reflected
to become b, where a2 = b2 and b is parallel to e1, we define v to be orthogonal to the
reflection plane. v := a − b ⊥ a + b.

b = a − v = a − vv⊤v
v⊤v

(∗)= a − 2vv⊤a
v⊤v = (I − 2vv⊤

v⊤v)a = H(v)a

Equality (∗) is justified through

v⊤v = (a − b)⊤(a − b) (□)= (a − b)⊤(a − b + a + b) = 2(a − b)⊤a = 2v⊤a

where we can add +a + b in step (□), because of the orthogonality (a − b) ⊥ (a + b) ⇔
(a − b)⊤(a + b) = 0.

To find the vector v in practice we choose v = a + sign(a1)ae1. The factor sign(a1) is
used to avoid small vectors v if a is almost on the x-axis and has negative a1 sign, i.e., to avoid
cancellation.

H(v)a = ±a2e1 : H(v)





∗
∗
...
∗




=





±a2
0
...
0





Notice that this may map on the x-axis with negative or positive sign. But to get the unique
form of R we must map with positive sign. This would require additional work to be numerically
stable.
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H(v) is called a Householder matrix. It is orthogonal and symmetric from its construction
as a reflection. The symmetry of the matrix follows from the property reflection specifically.

We apply those Householder matrices as orthogonal transformations. For consecutive steps,
we choose smaller householder matrices to eliminate continuous columns. Therefore, we fill the
diagonal not covered by H(v) with ones and everything else with zeroes.

Figure 12

The figure applies some H(v) in the first step. Then some


1 0
0 H(v)



in the second step, some



1 0 0
0 1 0
0 0 H(v)



 in the third step, etc. In total we get Qn−2Qn−2 . . . Q1A = R with A = QR

where Q = QH
1 QH

2 . . . QH
n−1 by using that the inverse of orthogonal matrices is its hermitian.

We will mostly consider overdetermined systems as those are the ones for which we are inter-
ested in the least squares solutions. But Householder transformations can be applied to any matrix.
Thus, this is suitable to determine the QR-Decomposition of arbitrary matrices.

When computing the QR-Decomposition in practice, we usually don’t compute and store Q.
Instead, only the normalized v vectors are computed and stored, because it is much cheaper com-
putationally, and in many cases it is sufficient to know the vectors v to compute even with Q.
When having stored some v we can just compute H(v) = I−2vv⊤ ∈ Rm,m, v ∈ Rm, v2 = 1.

All together, implementations usually compute R but only encode Q by its normalized reflec-
tion vectors v.

Grivens Rotations Householder matrices implement the idea of using reflections. With Givens
rotations we generalize the concept of rotating onto the x-axis to arbitrary dimensions. This is
very similar to 2D rotations, because with one Givens rotation we single out two axis and perform
a 2D rotation in its plane. With Householder matrices, we have made all elements below one in A
zero. With Givens rotations we may only attack two entries of which we want to zero one. Thus,
it may take us n − 1 givens rotations to zero all lower elements.
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Figure 13

One such Givens rotation is written as Gij(ai, aj), where we want to modify ai to make aj

zero and ai/aj are the corrent elements in the matrix. For Gik(a1, ak), ghe matrix specifically is




γ . . . σ . . . 0
...

...
...

−σ . . . γ . . . 0
...

...
...

0 . . . 0 . . . 1









a1
...

ak
...

an





=





a
(1)
1
...
0
...

an





γ = a1
|a1|2 + |ak|2

and σ = ak
|a1|2 + |ak|2

When we just look at the 2D plane spanned by e1 and ek, γ corresponds to cos(e1∠a) =
cos(ϕ) and σ corresponds to cos(ek∠a) = sin(e1∠a) = sin(ϕ). Hence, this is just as the rotation
matrix we know from Linear Algebra and the 2D introduction from above.

Because Givens rotation matrices are rotations, they are orthonormal matrices.

To store Givens rotations it is sufficient to store the two indices on which we work and the
angle between the vector a and ei, which we named ϕ above. But to make this process numerically

stable, we choose a more complex encoding for some G =


γ σ
−σ γ



:

Encoding: ρ :=






sign(σ), γ = 0√
2sign(γ)σ, |σ| < |γ|

1
2
√

2sign(σ)/γ, |σ| ≥ |γ|

Decoding:






ρ = ±1 ⇒ γ = 0, σ = ±1
|ρ| < 1 ⇒ σ = 1

2
√

2ρ, γ =
√

1 − σ2

|ρ| > 1 ⇒ γ = 1
2
√

2/ρ, σ =


1 − γ2

This encoding forgets the sign of the matrix G. So the signs of the corresponding rows of the
matrix R must be changed accordingly.

Computational Cost of Householder QR Householder-based QR of some A ∈ Rm,n, m ≥ n
is done by applying various H(v) for n − 1 times total. Applying one householder matrix H(v)
to some X ∈ Rm,k corresponds to computing H(v)X = X − 2v(v⊤X), which can be done in
O(mk). So, applying one householder matrix is proportional to the number of entries in X. While
applying householder matrices consecutively, the householder matrices shrink.

n−1

k=1
2(m − k + 1)(n − k) = O(mn2)
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QR-Decompositoin of Banded Matrices Givens rotations are often not chosen in general cases,
because we must apply quadratically more transformation matrices. Although the asymptotic cost
is also O(mn2) as with Householder transformations. However, in certain cases (such as with
banded matrices) Givens rotations work very well. This is usually the case (as also with banded
matrices), if only a few elements must be zeroed.

With banded matrices, specifically with an upper and lower bandwidth of 1, we only need to
apply one Given’s rotation per column. Thus, a total of n − 1 = O(n) transformation matrices
suffices.

Figure 14

From the structure of the Givens rotation matrix and the structure of the banded matrix follows
that we only turn one zero into a non-zero element with each Givens rotation (at most). So the
total number of non-zero entries remains constant (or decreases). By visual inspection we see
that the resuling matrix after all transformations is still tridiagonal, i.e., the bandwidth remains
unchanged. Such tridiagonal matrices are just a special case of general banded matrices for which
the bandwidth cannot increase in the resulting R reached through Givens rotations.

In this case, one Givens rotation only affects two rows of the matrix and, hence, it suggests to
have runtime O(n). But in fact the runtime is O(1), because we already know most entries to be
zero (≤ 3 non-zero entries in every row of the matrix) and mustn’t even consider them. So, we
have a total cost of O(n) for computing the QR decomposition.

4.3.4 QR-Decomposition in Eigen

We compute the QR-Decomposition of some matrix A after importing #include <Eigen
/QR> with Eigen::HousholderQR<MatrixXd> qr(A). We can access Q through qr
.householderQ() and R through qr.matrixQR().template triangularView<
Eigen::Upper>(). .matrixQR() returns a special matrix which contains R in the upper
triangle and the v vectors from the Householder matrices below the diagonal.

Listing 18: Full & Economical QR-Decomposition in Eigen

1 #include <Eigen/QR>
2

3 std::pair<MatrixXd,MatirxXd> qr_decomp_full(const MatrixXd& A) {
4 Eigen::HouseholderQr<MatrixXd> qr(A);
5 MatrixXd Q = qr.householderQ();
6 MatrixXd R = qr.matrixQR().template triangularView<Eigen::

Upper>();
7 return std::pair<MatrixXd,MatrixXd>(Q,R);
8 }
9

10 std::pair<MatrixXd,MatrixXd> qr_decomp_eco(const MatrixXd& A) {
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11 using index_t = MatrixXd::Index;
12 const index_t m = A.rows(), n = A.cols();
13 Eigen::HouseholderQR<MatrixXd> qr(A);
14 MatrixXd Q = (qr.householderQ()*MatrixXd::Identity(m,n));
15 MatrixXd R = qr.matrixQR().block(0,0,n,n).template

triangularView<Eigen::Upper>();
16 return std::pair<MatrixXd,MatrixXd>(Q,R);
17 }

The function .householderQ() returns an expression of the unitary matrix Q as a se-
quence of Householder transformations. The benefit of this only returning an expression and
not the actual matrix is: All the expensive multiplications are only done if really necessary. But
through optimizations, only a few multiplications may actually be performed. For instance, when
multiplying with a vector.

Computing the QR-Decomposition runs in O(mn2) as explained in the previous section.

4.3.5 QR-Decomposition based Solver for Linear Least Squares Problems

Remember the goal of least squares problems: Finding x ∈ Rn so that Ax − b2 is minimal
where A ∈ Rm,n and b ∈ Rm. Now we assume that the full QR-Decomposition of A is given, or
rather computed with one oft the above outlined methods, and want to understand how to utilize
this Decomposition to solve least squares problems.

Ax − b2 = QRx − b2 = Q(Rx − Q⊤b)2 = Rx − b̃2, b̃ := Q⊤b

If we assume full rank for A, also R has full rank. Then, the minimization problem looks like:

Figure 15

When discussing the use of the QR-Decomposition before, we have seen that now we must
only consider the upper n components to identify x which minimizes this expression. Specifically,
we must solve the system R0x = b̃1:n.
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Figure 16

The residual then is Q(Rx − b̃) = Q









b̃1
...

b̃n

0
...
0





− b̃





= Q





0
...
0

b̃n+1
...

b̃m





.

QR-based Linear Least Squares Solving in Eigen After having computed the QR-Decomposition
with .householderQR(), one can use .solve(x) on the resulting object, where x is a suit-
able vector or matrix.

Listing 19: Least Squares Solve in Eigen with QR

1 VectorXd lsqsolve_eigen(const MatrixXd& A, const VectorXd& b,
VectorXd& x) {

2 x = A.householderQR().solve(b);
3 return x;
4 }

This is a two-stage approach with a total runtime of O(mn2).

1. Compute R and Householder reflection vectors v in O(mn2).

2. Computing Q⊤b can be done in O(mn) by utilizing the reflection vectors and avoiding to
actually compute the Householder matrices.

3. Solving R0x = b̃1:n in O(n2).

The QR-Decomposition can be reused to solve multiple least squares problems. We only need
to repeat stages 2 and 3 then. An additional solve, thus, works in O(mn + n2).

4.4 Singular Value Decomposition (SVD)

4.4.1 Definition & Theory

Theorem (Full) Singular Value Decomposition: For any A ∈ Km,n there are uni-
tary/orthogonal matrices U ∈ Km,m, V ∈ Kn,n and a (generalized) diagonal matrix
Σ = diag(σ1, ..., σp) ∈ Rm,n, p := min{m, n}, σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 such that

A = UΣVH

σ1, ..., σp are the singular values of A.
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To my knowledge, the proof of this theorem wasn’t considered and, thus, isn’t relevant. (?)

Figure 17: full SVD of fat and tall matrices

But we may also consider the thin SVD with Σ ∈ Kp,p, U ∈ Km,p, VH ∈ Kp,n by removing
the zero rows of Σ and remove the correspondingly irrelevant

Figure 18: economical SVD

Definition Singular Value Decomposition: The decomposition A = UΣVH from the
preceding theorem is called Singular Value Decomposition (SVD) of A. The diagonal
entries σi of Σ are the singular values of A. The columns of U/V are the left/right singular
vectors of A.

The decomposition has an intuitive geometric meaning. V and U are orthogonal transforma-
tions. VH transforms the space orthogonally (combination or rotations and reflections) so that the
deformations of the transformation A to the space happen along the axis. We use Σ to scale along
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those axis and then rotate/reflect the space again. So V and U perform basis changes so that we
can apply simple scalings though Σ.

Lemma: The squares σ2
i of the non-zero singular values of A are the non-zero eigenvalues

of AHA, AAH with associated eigenvectors (V):,1, ..., (V):,p or rather (U):,1, ..., (U):,p
respectively.

Proof. We consider AHA but the case for AAH is analogous.

AHA = (UΣVH)H(UΣVH) = VΣHUHUΣVH = VΣHΣVH

AHA and ΣHΣ are similar matrices with the same eigenvalues. And V contains the eigen-
vectors of AHA.

SVD Additive Rank-1 Decomposition A = UΣVH may also be written as
p

j=1 σjujvH
j .

The tensor product clearly has rank one, so we add p rank-1 matrices. If σr+1 = · · · = σp = 0:

A = UΣVH =
r

j=1
σjujvH

j

This different way of writing the SVD is helpful in many situations! Remember it.

For instance, notice that if σr ∕= 0:

Avl =
r

j=1
σjujvH

j vl =


σlul, l ≤ r

0, l > r

Then, it follows that

• R(A) = span{u1, . . . , ur} and rank(A) = r

• N (A) = span{vr+1, . . . , vn}

Lemma: If for some 1 ≤ r ≤ p := min{m, n}, the singular values of A ∈ Km,n satisfy
σ1 ≥ ... ≥ σr > σr+1 = ... = σp = 0, then

• rank(A) = r

• N (A) = span{(V):,r+1, ..., (V):,n}

• R(A) = span{(U):,1, ..., (U):,r}

The given vectors spanning N and R are even an orthonormal basis each.

4.4.2 SVD in Eigen

To work with the SVD in Eigen, one shall include #include <Eigen/SVD>. Then with
Eigen::JacobiSVD<MatrixXd> svd(A) can be used to compute the SVD of A. By

default, the matrices U and V are not explicitly computed. But one can request so and specify
whether one wants full/economical form by passing options as demonstrated in the following
listing.
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Listing 20: SVD in Eigen

1 #include <Eigen/SVD>
2

3 std::tuple<MatrixXd, MatrixXd, MatrixXd> svd_full(const MatrixXd
& A) {

4 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeFullU | Eigen
::ComputeFullV);

5 MatrixXd U = svd.matrixU();
6 MatrixXd V = svd.matrixV();
7 VectorXd sv = svd.singularValues();
8 MatrixXd Sigma = MatrixXd::Zero(A.rows(), A.cols());
9 const unsigned p = sv.size();

10 Sigma.block(0,0,p,p) = sv.asDiagonal();
11 return std::tuple<MatrixXd, MatrixXd, MatrixXd>(U, Sigma, V);
12 }
13

14 std::tuple<MatrixXd, MatrixXd, MatrixXd> svd_eco(const MatrixXd&
A) {

15 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen
::ComputeThinV);

16 MatrixXd U = svd.matrixU();
17 MatrixXd V = svd.matrixV();
18 VectorXd sv = svd.singularValues();
19 MatrixXd Sigma = sv.asDiagonal();
20 return std::tuple<MatrixXd, MatrixXd, MatrixXd>(U, Sigma, V);
21 }

• Despite not being shown, one can also specify Eigen::ComputeFullU | Eigen::
ComputeThinV, for instance.

• One shall not call .matrixU() nor .matrixV() if one did not request for them to be
computed as mentioned before.

• The provided singular values are sorted in non-decreasing order.

Although we don’t discuss the workings of the algorithms used to compute the SVD we shall
memorize its runtime:

O(min{m, n}2 · max{m, n})

SVD based rank computation Using the SVD one can quite easily compute the rank of some
matrix. From an above Lemma we know that rank(A) = r with r being the number of non-zero
singular values. When determining r we shall NOT determine r by testing the singular values to
be zero using == 0. Instead, we shall test for relative smallness.

1 MatrixXd::Index rank_by_svd(const MatrixXd &A, double tol =ESP){
2 if (A.norm()==0)
3 return MatrixXd::Index(0);
4 Eigen::JacobiSVD<MatrixXd> svd(A);
5 const VectorXd sv = svd.singularValues();
6 MatrixXd::Index n = sv.size();

46



7 MatrixXd::Index r = 0;
8 while ((r<n) && (sv(r) >= sv(0)*tol))
9 r++;

10 return r;
11 }

Anyway, Eigen provides its own utility function for this which should generally be used.
If .setThreshold(tol) was not called, Eigen uses the machine precision epsilon for that
datatype.

1 MatrixXd::Index rank_eigen(const MatrixXd &A, double tol = ESP)
{

2 return A.jacobiSvd().setThreshold(tol).rank();
3 }

Orthonormal Bases of Range and Nullspace of A using SVD .

1 MatrixXd nullspace(const MatrixXd &A, double tol = EPS) {
2 using index_t = MatrixXd::Index;
3 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeFullV);
4 index_t r = svd.setThreshold(tol).rank();
5 MatrixXd Z = svd.matrixV().rightCols(A.cols()-r);
6 return Z;
7 }
8

9 MatrixXd rangespace(const MatrixXd &A, double tol = EPS) {
10 using index_t = MatrixXd::Index;
11 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeFullU);
12 index_t r = svd.setThreshold(tol).rank();
13 return svd.matrixU().leftCols(r);
14 }

4.4.3 SVD based Solver for Linear Least Squares Problems

Now we discuss how to solve least squares problems using SVD. This extends our repertoire
of methods to solve SVD from QR and normal equations. Remember that for arbitrary A we
can compute the unique solution of Ax = b according to least squares and the minimal norm
condition. For that, we learned about the Moore-Penrose Pseudoinverse, which we now denote
A+: x† = A+b.

We derived the Moore-Penrose Pseudoinverse by considering the normal equations and the
additional criteria x† ∈ N (A)⊥ so that we get the unique solution with minimum norm through
the requirement of orthogonality of the vector to the set of all possible solutions.

Now we notice that N (A)⊥ = span{v1, ..., vr} = R(V1) = {V1y|y ∈ Rr}. Here we have
split V =


V1 V2


with V1 being the upper r columns of V⊤ and V2 the lower n − r rows.
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So, x† = V1y for some y ∈ Rr. We can combine this with the normal equation:

A⊤Ax = A⊤b
⇒ A⊤AV1y+ = A⊤b

⇒ V⊤
1 A⊤AV1y+ = V⊤

1 A⊤b
⇒ V⊤

1 VΣU⊤UΣV⊤V1y+ = V⊤
1 VΣ⊤U⊤b

⇒ V⊤
1 [V1, V2]


Σr 0
0 0

 
Σr 0
0 0

 
V⊤

1
V⊤

2



V1y+ = V⊤
1


V1 V2

 
Σr 0
0 0

 
U⊤

1
U⊤

2



b

⇒ Σ2
ry+ = ΣrU⊤

1 b
⇒ Σry+ = U⊤

1 b
⇒ y+ = Σ−1

r U⊤
1 b

We can extend this formula to compute the solution to least squares problem: V:,1:rΣ−1
r U⊤

1 b.

Listing 21: Least Squares Solve using SVD in Eigen

1 #include <Eigen/SVD>
2 VectorXd lsqsvd(const MatrixXd &A, const VetorXd &b) {
3 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen

::ComputeThinV);
4 VectorXd sv = svd.singularValues();
5 unsigned int r = svd.rank();
6 MatrixXd U = svd.matrixU(), V=svd.matrixV();
7 return V.leftCols(r) * (sv.head(r).cwiseInverse().asDiagonal()

* (U.leftCols(r).adjoint() * b));
8 }
9

10 VectorXd lsqsvd_eigen(const MatrixXd &A, const VectorXd &b) {
11 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen

::ComputeThinV);
12 return svd.solve(b);
13 }

Theorem Pseudoinverse and SVD: If A ∈ Km,n has the SVD A = UΣVH , then its
Moore-Penrose pseudoinverse is given by A† = V1Σ−1

r UH
1 .

4.4.4 SVD based Optimizations and Approximations

Norm-Constrained Extrema of Quadratic Forms Given some A ∈ Km,n, m ≥ n, we con-
sider how to find x ∈ Kn with x2 = 1 such that Ax2

2 is maximal. Through this maximum,
we can define the Euclidean matrix norm.

The Euclidean matrix norm of A is defined as:

A2 := max
x

Ax = σ1

With the SVD A = UΣV⊤ we can solve this problem as it corresponds to maximizing
Ax2 = ΣV⊤x2. If we consider y = V⊤x with y = 1 we intend to maximize Ax2 =
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n
l=1 σ2

l y2
l . As y must have norm 1, we can maximize this by putting all weight on the largest

singular value. So, y = e1 and x = Ve1 = (V):,1. The maximal value is Ax2 = σ1.

Fitting Hyperplanes We can express a hyperplane by using a vector n orthogonal to the plane
and one point of the plane expressed through p.

n⊤(x − p) = 0 ⇒ n⊤x − n⊤p = 0 ⇒ n⊤x − c′ = 0 ⇒ n⊤ + c = 0
=⇒ H := {x ∈ Rd|c + n⊤x = 0}, n2 = 1, c ∈ R

Given point coordinate vectors y1, ..., ym ∈ Rd, m > d, we want to find H ↔ {c ∈ R, n ∈
Rd, n2 = 1} such that

m
j=1 dist(H, yj)2 =

m
j=1 |c + n⊤yj |2 → min. I.e.:







1 y1,1 . . . y1,d

1 y2,1 . . . y2,d
...

...
...

...
1 ym,1 . . . ym,d









c
n1
...

nd






2

→ min, with n2 = 1

We rewrite this using the QR-Decomposition of A.

Ax2 → min
⇐⇒

Rx2 =







r11 r12 · · · r1,d+1
0 r22 · · · r2,d+1
...

...
. . .

...
0 0 · · · rd+1,d+1
0 0 . . . 0
...

...
...

...
0 0 . . . 0









c
n1
...

nd






2

→ min

We can choose c freely. Thus, we can optimize n to minimize the cost through Ã =





r22 · · · r2,d+1
...

. . .
...

0 · · · rd+1,d+1
0 . . . 0
...

...
...

0 . . . 0





.

We can do this minimization under the constraint n = 1 just as in the previous paragraph. But
instead of choosing the maximum singular value, we now look at the minimum singular value
and the corresponding vector (V):,r from V. Once having found this optimal solution, we choose
c := − 1

r11

d
l=1 nlr1,l.

We can generalize to let an arbitrary number of parts of the vector x be without constraint.

Listing 22: Fitting under Constraint in Eigen

1 void clsq(const MatrixXd& A, const unsigned dim, double& c,
VectorXd& n) {

2 unsigned p = A.cols(), m = A.rows();
3 if (p < dim + 1) {
4 cerr << "not enough unknowns\n";
5 return;
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6 }
7 if (m < dim) {
8 cerr << "not enough equations\n";
9 }

10

11 m = std::min(m, p);
12 MatrixXd R = A.householderQr().matrixQR()
13 .template triangularView<Eigen::Upper>();
14 MatrixXd V = R.block(p-dim, p-dim, m+dim-p, dim)
15 .jacobiSvd(Eigen::ComputeFullV).matrixV();
16 n = V.col(dim - 1);
17

18 MatrixXd R_topleft = R.topLeftCorner(p-dim, p-dim);
19 c = -(R_topleft.template triangularView<Eigen::Upper>()
20 .solve(R.block(0,p-dim,p-dim,dim)) * n)(0);
21 }

Best Low-Rank Approximation In this section we want to get approximations of matrices
through matrices with a lower rank. A low-rank matrix is a matrix A ∈ Rm,n if r := rank(A) ≪
min{m, n}. This enables compression, because we can store the lower-rank matrices using less
memory by utilizing its SVD in the form A =

r
l=1 σl(U):,l(V)⊤

:,l. This only takes O(r(m +
n)) ≪ O((m · n)) memory.

Before we introduce how to get the best low-rank approximation, we introduce the Frobenius
norm.

Definition Frobenius Norm: The Frobenius norm of A ∈ Km,n is defined as

A2
F :=

m

i=1

n

j=1
|aij |2

Theorem Best Low-Rank Approximation: Let A = UΣVH be the SVD of A ∈ Km,n.
For 1 ≤ k ≤ rank(A) set

Ak := UkΣkVH
k =

k

l=1
σl(U):,l(V)H

:,l

• Uk := [(U):,1, ..., (U):,k] ∈ Km,k

• Vk := [(V ):,1, ..., (V ):,k] ∈ Kn,k

• Σk := diag(σ1, ..., σk) ∈ Kk,k

Then for  ·  =  · F and  ·  =  · 2 holds true

A − Ak ≤ A − F, ∀F ∈ Rk(m, n)

that is, Ak is the rank-K best approximation of A in the matrix norms  · F and  · 2.

Rk(m, n) = {M ∈ Km,n|rank(M) ≤ k}
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As with any approximation, this introduces an error. The error depends on the chosen norm:

• Euclidean norm: A − Ak2 = 




0 0
0 Σk+1−n

0 0



 2 = σk+1

• Frobenius norm: A − Ak2
F = 




0 0
0 Σk+1−n

0 0



 2
F = σ2

k+1 + ... + σ2
n =

min{m,n}
j=k+1 σ2

j

This reveals that the decay of the singular values predicts the quality of low-rank approxima-
tions. If we want the relative error to be below some tolerance, we can use this formula tho choose
the approximation rank k:

A − Ak2
A2

= σk+1
σ1

≤ target tolerance

Principal Component Data Analysis (PCD) PCD could be said to be a method of data sci-
ence. Most generally, it consists of two things: Trend detection in a dataset and data classification
according to those trends for individual data vectors.

Instead of providing a purely theoretical and formal introduction to the topic, we will just go
hands-on with an example and illustrate everything important along the way. This better equips
the reader with the necessary intuition for this topic.

Trend Analysis We have n stocks of which we know the price at m times. We fit this data
in a matrix A ∈ Rm,n where each column corresponds to one stock. We now want to find the
dominant trends for stock price behavior, i.e., Rm vectors which showcase some most typical
stock trends.

In Linear Algebra formality, this corresponds to us wanting to find orthonormal vectors u1, . . . , up ∈
Rm such that for all k ∈ [n]: (A):,k from our dataset is in span{u1, . . . , up} + error. The goal is
to choose u1, . . . , up so that the accumulated error is minimal. Then, the p vectors ui correspond
to the trends in the dataset.

The approach is very similar to low-rank approximations: We want to keep the components of
the SVD of A with high singular values.

A =
p

l=1
σlulv

⊤
l

  
reconstruction from trends

+
min{n,m}

l=p+1
σlulv

⊤
l

  
error/deviation from actual value

The p trends are meaningful if the singular values decay quickly so that with p ≪ m, n we
already get good information for the overall system.

Assuming p is already known, the p dominant trends can then be found in the p leftmost
columns of U as those being the vectors, which span the space corresponding to the p largest
singular values. The factor σl then corresponds to the importance of this trend. And (vl)k denotes
the strength of the l-th trend in the data vector ak.
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Figure 19: Help to Understand the Strength of a Trend in a Data Vector

One may consider a lin-log plot of the singular values depending on their number in the order-
ing. From this graph, one can often quickly see which few singular values with highest number
are most important.

Data Classification As just mentioned, the entries of V can be understood to identify the
strength of some trend in some data vector ak. So we can simply plot all data vectors as a point
in a (multi-dimensional) graph, where the ’strength’ values for the main identified trends are the
values for the different axis. Then, we can observe how different groups/clusters emerge.

If we had a new data vector which is was not part of the optimization and we want to identify
the strengths of our trends for this new vector, we must find its best approximation in in the basis
{u1, . . . , uk}. The coefficients then correspond to σi · si, where si can be said to correspond to
the strength of the i-th trend.

Proper Orthogonal Decomposition (POD) Given some dataset, this is about approximating
this set with a subspace of the dataspace of some arbitrary dimension. With lower dimensions, our
approximation will clearly be less accurate but also more abstract.

We can compare this approach to least squares on a high level. With least squares we always
try to find parameters for a linear model so that the model has the lowest deviation possible from
the true data. The deviation is measured by Ax − b2. POD wants to find an approximation but
differs in some ways: (1) Instead of finding parameters for an arbitrary linear model, POD always
consider a subspace. (2) This subspace cannot be affine. It must always go through zero. (3) The
measure for deviation from the actual data is different. With POD, we consider the distance across
all dimensions from our data vectors to the selected subspace.

Least Squares Deviation (vertical distances) POD Deviation (minimal distances)

Figure 20: Comparison of Deviations of POD and Least Squares with Linear Regression

More formally: Given data points a1, . . . , an ∈ Rm with m, n ∈ N, for some k ≤ min{m, n}
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we want to find a subspace Uk ⊂ Rm such that

Uk = argminW ⊂Rm,dim W =k

n

j=1
inf

w∈W
aj − w2

2.

We want to find Uk in the form of a set of orthonormal basis vectors for Uk. Let W =
w1 . . . wk


∈ Rm,k, k ≤ m denote this basis.

If x is an arbitrary vector in Rm we measure the quality of the approximation W for x through
the distance of x from the subspace Uk / space spanned by W.

dist(x, W) = min
y∈Rk

x − Wy2 = x − WW⊤x2

The minimization through y = W⊤x holds, because WW⊤ is the (orthogonal) projection of
x onto the subspace spanned by W (not justified in the lecture).

If we apply this quality measure for all our data points, we can express the criteria for the POD
solution in another way:

n

j=1
inf

w∈W
aj − w2

2 =
n

j=1
aj − WW⊤aj2

2 = A − WW⊤A2
F

=⇒ argminW∈Rm,k,W⊤W=IA − WW⊤A2
F

Notice that WW⊤ has at most rank k, and then also WW⊤A has at most rank k. Remember
that we have discussed before how to get the best rank k approximation of some matrix. Let’s use
that optimal approximation for WW⊤A, which then can only have lower distance.

A − WW⊤AF ≥ A − UkΣkVH
k F , ∀W ∈ Rm,k, W⊤W = I

With the SVD of A we see that there is an assignment to W which is exactly equal to this
lower bound. This assignment then must be the optimally minimizing solution. The assignment
ist A = UΣV⊤ (its SVD) and W = Uk. Then:

WW⊤A = UkU⊤
k UΣV⊤ = U [Ik 0] ΣV⊤ = UkΣkV⊤

k

Theorem Solution of POD Problems: The subspace Uk spanned by the first k left singular
vectors of A =


a1 . . . an


∈ Rm,n solves the POD problem

Uk = R((U):,1:k)

with A = UΣVH being the SVD of A.

We can compute the POD error like this:

n

j=1
inf

w∈Uk

aj − w2
2 =

p

l=k+1
σ2

l

That statement follows from the error of the low-rank approximation, which is the same of our
POD solution.

The POD problem is basically solved as a low rank approximation. Above we have shown
that those two problems can generally be understood equivalently.
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4.5 Comparison of Normal Equations, QR, SVD

Normal Equations are only of practical use for very large sparse matrices, because the other ap-
proaches struggle to utilize that sparsity/the orthogonal transformations destroy the sparsity. But
is the matrix is not sparse or not very large, we prefer the other approaches for their better numeric
stability.
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5 Filtering Algorithms

A signal is obtained from measuring some time-dependent value X(t) at n sampling points
t0, t1, . . . , tn−1, which we write as a vector ∈ Rn. The process of acquiring such a vector is
called sampling. Usually, we sample at equidistant points and denote the time-difference between
ti and ti+1 with ∆t. Those are time-discrete (discrete sampling points), finite (finite sampling
points) and analog (values of X are ∈ R). If we omit finite, we leave the scope of Linear Algebra
as we get infinite sequences in the real numbers: (Xk)k∈Z ∈ RZ.

In this section, we will consider how to work with signals, analyze them, decompose them,
... We start with a basic theoretical introduction and then discuss the Fourier Transform in length,
specifically the Discrete Fourier Transform (DFT).

5.1 Filters and Convolutions

A filter/channel is a function F : input signals → output signals. More formally, F : l∞(Z) →
l∞(Z) where lm(K) := {(xj)j∈K| sup |xj | < m}. So that we can use Linear Algebra to work with
signals and describe filters, we introduce four properties which we will assume in the following.

5.1.1 LT-FIR

Finiteness means that finite input signals are mapped to finite output signals.

Definition Finite Channel/Filter: A channel/filter F : l∞(Z) → l∞(Z) is called finite, if
every input signal of finite duration produces an output signal of finite duration,

(∃M ∈ N : |j| > M ⇒ xj = 0)
=⇒

(∃N ∈ N : |k| > N ⇒ (F ((xj)j∈Z))k = 0)

Time invariance means that is should not matter when a signal arrives. With Sm being the
shift operator (/channel/filter) as Sm((xj)j∈Z) = (xj−m)j∈Z:

Definition Time-invariant channel/filter:
A filter F : l∞(Z) → l∞(Z) is called time-invariant (TI), if shifting the input in time leads
to the same output shifted in time by the same amount.

∀(xj)j∈Z ∈ l∞(Z), ∀m ∈ Z : F (Sm((xj)j∈Z)) = Sm(F ((xj)j∈Z))

Time-invariant filters/channels commute with the time shift operator.

Linearity means that the channel/filter is a linear map.

Definition Linear Channel/Filter: A filter F : l∞(Z) → l∞(Z) is called linear, if F is a
linear mapping:

F (α(xj)j∈Z + β(yi)j∈Z) = αF ((xj)j∈Z) + βF ((yj)j∈Z)

for all sequences (xj)j∈Z, (yj)j∈Z and real numbers α, β ∈ R.
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Causality means that the output should only arrive after the input.

Definition Causal Channel/Filter: A filter F : l∞(Z) → l∞(Z) is called causal (or
physical, or nonanticipative), if the output does not start before the input

∀M ∈ N : (xj)j∈Z ∈ l∞(Z), xj = 0, ∀j ≤ M ⇒ F ((xj)j∈Z)k = 0, ∀k ≤ M

We may use the acronym LT-FIR for filters that are linear, time-invariant, finite, and causal.
From now on, we only consider LT-FIR filters with finite, time-discrete, and analog signals - unless
explicitly stated otherwise.

Impulse Response A linear mapping is uniquely defined by actions on the basis vector. For
l∞(Z), a basis is given by ek := (δjk)j∈Z, which we call an impulse. Form time-invariance
follows that we can shift any basis signal ek to the ’origin’ e0, evaluate there, and then shift back.
Thus, from S−k(ek) = e0 follows that knowing F (e0) fully defines a LT-FIR.

Definition Impulse Response: The impulse response (IR) of a channel/filter is the output
for a single unit impulse at t = 0 as input, that is, the input signal is

xj = dj,0 :=


1, if j = 0
0, else

(Kronecker symbol)

Now we will reason more formally, why a LT-FIR signal is fully defined by its impulse re-
sponse. From F ◦ Sm = Sm ◦ F, ∀m ∈ Z follows with time-invariance that

F ((δj,k)j∈Z) = (hj−k)j∈Z =

. . . 0 h0 h1 . . . hn−1 0 . . .


, h0 being at tk = k · ∆t

With linearity follows:

F ((xj)) =


k

xkF (Sk(δj,0)j∈Z) =


k

xkSk(F ((δj,0)j∈Z))

5.1.2 LT-FIR Linear Mappings

We have just seen that any signal is a superposition of shifted impulse responses. For some input
signal of length m, a filter with an n impulse response produces an output of length m + n − 1.
Generally, ”output duration is = input duration + duration of impulse response − 1”.

yk =
m−1

j=0
hk−jxj , k = 0, ..., m + n − 2
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Figure 21

We can extend this to infinite signals (if they are zero after some time), because the additionally
considered h values are trivially 0:

yk =
m−1

j=0
hk−jxj =



j∈Z
hk−jxj

Definition Convolution of Sequences: Given two sequences (hk)k∈Z, (xk)k∈Z, at least one
of which is finite or decays sufficiently fast, their convolution is another sequence (yk)k∈Z,
defined as

yk =


j∈Z
hk−jxj , k ∈ Z

We write (yj) = (hx) ∗ (xk).

We require finiteness of one or sufficiently fast decay so that this sum exists. For practical
applications we want finiteness, so that we can represent yk in memory.

Theorem Convolution of Sequences Commutes: If well-defined, the convolution of se-
quences commutes

(xk) ∗ (hk) = (hk) ∗ (xk)

Convolutions can be used to just arbitrarily combine two signals. Or we can also explicitly use
it to apply a filter to a signal by considering the cnovolution with its impulse response.

5.1.3 Discrete Convolutions

Just as a reminder: We restrict ourselves to finite sequences/signals with finite filters/channels.
This enables us to use methods form Linear Algebra. As such, (discrete) convolution, i.e., convo-
lution of finite signals, can be understood as a matrix vector product.
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Figure 22: Discrete Convolution

The first column is the zero-extended/-padded impulse response. The columns in the matrix
arise from cyclic permutation.

Discrete Convolution (Formula/Definition) Discrete Convolution (Linear Algebra)

Figure 23: Discrete Convolution Example

Definition Discrete Convolution: Given x = [x0, ..., xm−1]⊤ ∈ Km and h =
[h0, ..., hn−1]⊤ ∈ Kn, their discrete convolution is the vector y ∈ Km+n−1 with com-
ponents

yk =
m−1

j=0
hk−jxj , k = 0, ..., 2n − 2

where we have adopted the convention hj := 0 for j < 0 or j ≥ n.

The notation is as for sequences: y = h ∗ x = x ∗ h with y, h, x being vectors.

Example: (Discrete) Convolutions are not only used for signal processing/applying filters.
The multiplication of two polynomials p(x) and q(x) of degree ≤ n−1 can also be achieved
by computing the discrete convolution of their coefficient vectors.
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5.1.4 Periodic Convolution

So far we looked at finite, time-discrete, and analog signals. We can omit finiteness for a certain
case while still being able to use Linear Algebra. This case are periodic signals.

Definition Periodic Time-Discrete Signal: An n-periodic signal, n ∈ N, is a sequence
(xj)j∈Z ∈ l∞(Z) satisfying

xj+n = xj , ∀j ∈ Z

Such period signals can still be represented by vectors x =




x0
...

xn−1



 ∈ Rn.

If we apply a LT-FIR filter to a periodic signal, the output signal is periodic itself. If we apply
a filter with impulse response (hk)k∈Z to an n-periodic signal/sequence (xk) we can compute
(yk) := F ((xk)) like this:

yk =


j∈Z
hk−jxj =



j∈Z
hjxk−j

j=v+ln=
n−1

v=0



l∈Z
hv+lnxk−v−ln =

n−1

v=0






l∈Z
hv+ln



 xk−v

=
n−1

v=0
pvxk−v with (pv) being a periodic sequence from the impulse response (hk)

So, the output signal of applying a LT-FIR filter to an n-periodic signal is again an n-periodic
signal. We see that we can express this as a discrete periodic convolution of the n-periodic input
signal with the n-periodic sequence (pv) created from the impulse response (hk). Such discrete
periodic convolutions are different from the discrete (non-periodic) convolutions in the size of the
output vector.

Definition Discrete Periodic Convolution: The discrete periodic convolution of two n-
periodic sequences (pk)k∈Z, (xk)k∈Z yields the n-periodic sequence (yk)k∈Z.

(yk) := (pk) ∗n (xk)

yk :=
n−1

j=0
pk−jxj =

n−1

j=0
xk−jpj , k ∈ Z

Discrete periodic convolutions can be interpreted as applying an LT-FIR filter to a periodic
signal. And remembering the LT-FIR filters are linear, leads us to realizing that the periodic
convolution is a linear map. Just as the discrete (non-periodic) convolution could be expressed as
a matrix multiplication, we can also write this linear map R2 → R, p × x → y, y := p ∗n x (with
y, p, x ∈ Rn) as a matrix multiplication.
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Figure 24: Discrete Periodic Convolution as Matrix-Vector Multiplication

The matrix used for such a discrete periodic convolution has a special form. We call such
matrices circulant matrices.

Definition Circulant Matrix: A matrix C = [cij ]ni,j=1 ∈ Kn,n is circulant

:⇐⇒ ∃(pk)k∈Z n-periodic sequence: cij = pj−i, 1 ≤ i, j ≤ n

Notice that this definition uses different indices than the above figure.

A circulant matrix is fully defined by its associated n-periodic signal/sequence (pk).

Convolution by Periodic Convolution So far we have defined discrete (non-periodic) convo-
lutions and discrete periodic convolutions differently. And by how we defined them they are
actually different. Specifically, the matrix for discrete (non-periodic) convolutions did not have to
be square while it is square with discrete periodic convolutions. However, we can express discrete
(non-periodic) convolutions as discrete periodic convolutions.

Consider a =




a0
...

an−1



 , b =




b0
...

bn−1



 , n ∈ N and let z = a ∗ b, zk =
n−1

j=0 aj−kbj , k =

0, ..., 2n − 2. The idea to express this discrete (non-periodic) convolution as a periodic one, is to
suppress the interactions between different periods by padding the sequences with zeros. Instead

of a and b, let’s consider xk :=


ak, 0 ≤ k < n

0, n ≤ k < 2n − 1
and yk :=


bk, 0 ≤ k < n

0, n ≤ k < 2n − 1
.

Those are called the associated 2n − 1 periodic sequences. Then we have z = a ∗ b = x ∗2n−1 y.
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Figure 25: Discrete (Non-Periodic) Convolution by Discrete Periodic Convolution

5.2 Discrete Fourier Transform (DFT)

The Fourier Transform is one of the most important achievements of mathematics and has a huge
impact across a very wide range of applications. For instance, without the Fourier transform, mod-
ern cellular communication would not be possible as is. The basic idea of the Fourier Transform
is, given a signal, to decompose it into pure sin and cos waves, which sum up to the actual sig-
nal when scaled and added. This can be understood as wanting to find the ”ingredients” of some
signal. This is very important to transmit information using signals and of utmost importance in
signal processing.

Here, we consider the Discrete Fourier Transform (DFT), which deviates from the theoretical
Fourier Transform in that its signals are sampled in a time-discrete fashion. We will base our
theory of DFS on circulant matrices.

5.2.1 Diagonalizing Circulant Matrices

This section will look at DFT and various of its properties.

Experiment: Eigenvectors of Circulant Matrices This provides some motivation to how we
arrive at DFT, what all of it has to do with sin and cos, the connection to circulant matrices, ...
Lets consider a numerical experiment to get a better feeling for the situation. Let C = circul
(VectorXd::Random(8)); be some arbitrary 8 × 8 circulant matrix. If we compute the
eigenvectors of such C we make an interesting observation. For all n × n circulant matrices, the
eigenvectors are identical!

If we consider circulant matrices in Rn,n, the eigenvectors are usually in the complex numbers
and their real and imaginary components remind us of sampled cos / sin signals with different
frequencies.

61



Figure 26: Eigenvectors of Circulant Matrix circul([1, 2, . . . , 128]⊤)

Eigenvectors of Circulant Matrices Now we will continue with a formal treatment. Recall that
trigonometric functions are closely linked to complex calculus through

eit = cos t + i · sin t

We will proceed with suggesting a formal definition of eigenvectors for circulant matrices
and will afterwards verify that those are indeed the eigenvectors for all circulant matrices. As an
answer to the question how to find those eigenvectors: Intuition, ingenuitity, luck, try-and-error, ...

The definition relies on the n-th roots of unity n
√

1. But instead of considering the trivial
solution 1, we look at n

√
1 = wn = e− 2πi

n . Generally, the n-th roots of unity have many properties:

• wn = w−1
n

• wn
n = 1

• w
n
2
n = −1

• wk
n = wk+n

n

•
n−1

k=0 wkj
n =

n−1
k=0(wj

n)k =


n, j = 0 mod n

0, j ∕= 0 mod n

We define

vk :=

w−kj

n

n−1

j=0
∈ Cn, k = 0, ..., n − 1

We will show that vk, k = 0, ..., n − 1, are the eigenvectors of any circulant C ∈ Cn,n.

(Cvk)j =
n−1

l=0
(C)j,l(vk)l =

n−1

l=0
uj−lw

−kl
n

lold=j−lnew=
n−1

l=0
ulw

(l−j)k
n = w−jk

n

n−1

l=0
ulw

lk
n

= (vk)j · λk with λk =
n−1

l=0
ulw

lk
n

This holds for j = 0, ..., n − 1. Thus, Cvk = λkvk. This means that with vk we have the
eigenvectors of C. As there are n different vk and at most n eigenvectors, those are all eigenvectors
of C. Furthermore, all eigenvectors vk are pairwise orthogonal:

vH
k vm =

n−1

j=0
wkj

n w−mj
n =

n−1

n=0
w(k−m)j

n = 0, if k ∕= m
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However, they for k = m we DON’T have vH
k vm = 1, but = n. Thus, this does NOT form

an orthonormal basis but only an orthogonal basis. We can and will still use the orthogonal basis
to diagonalize C below.

Figure 27: Orthogonal Eigenvector Basis for Circulant Matrices

If we write the orthogonal vectors vk in a matrix, we call that matrix the Fourier matrix.

Fn =





ω0
n ω0

n · · · ω0
n

ω0
n ω1

n · · · ωn−1
n

ω0
n ω2

n · · · ω
2(n−1)
n

...
...

. . .
...

ω0
n ω

(n−1)
n · · · ω

(n−1)2
n





=

ωlj

n

n−1

l,j=0
∈ Cn,n

But we can scale the vectors with 1√
n

so that they have norm 1. Then, we have an orthonormal
basis.

Lemma Properties of the Fourier Matrix: The scaled Fourier-matrix 1√
n

Fn is unitary:

F−1
n = 1

n
FH

n = 1
n

Fn

⇔ 1√
n

F−1
n = 1√

n
FH

n

Lemma Diagonalization of Circulant Matrices: For any circulant matrix C ∈ Kn,n,
cij = ui−j , and (uk)k∈Z being an n-periodic sequence, holds true:

CFn = Fndiag(d1, ..., dn) i.e., eigenvectors are just scaled by their eigenvalue (di = λi)

d0, ..., dn−1

⊤
= Fn


u0, ..., un−1

⊤

Proof. Above we derived that vk are the eigenvectors with eigenvalues λk. For the eigenvalues we
had the expression λk =

n−1
l=0 ulw

lk
n . If we denote di = λi, the first statement follows directly

from that derivation.
If we perform this derivation again (we skip some steps, see earlier derivation for details) with

slightly different notation, we quickly see that the diagonal entries/eigenvalues can be computed
as given by the second expression.

Cvk = C(Fn):,k = (Fn):,k

n−1

l=0
ulw

lk
n = (Fn):,k

n−1

l=0
ul(Fn)k,l = (Fn):,k(Fnu)k
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Generalizing from one vk, i.e., one column of Fn leads to the statements of the Lemma.

With F−1
n = nF−1

n from the Lemma on ”Properties of the Fourier Matrix” follows:

=⇒ C = F−1
n DFn

This is the diagonalization of any circulant matrix C.

Definition Discrete Fourier transform (DFT): The linear map

DFTn : Cn → Cn

DFTn(y) := Fny, y ∈ Cn

is called Discrete Fourier Transform (DFT).
For example:


c0, ..., cn−1


:= DFTn(y)

ck =
n−1

j=0
yjwjk

n , k = 0, ..., n − 1

5.2.2 DFT in Eigen

The implementation of DFT in Eigen isn’t optimal. Anyway, implementing DFT in a performant
and stable way is tricky. Generally, we should use library functions.

To use DFT in Eigen, we must #include <unsupported/Eigen/FFT>.

Listing 23: DFT in Eigen

1 int main() {
2 using Comp = complex<double>;
3 const VectorXcd::Index n = 5;
4 VectorXcd y(n), c(n), x(n);
5 y << Comp(1,0), Comp(2,1), Comp(3,2), Comp(4,3), Comp(5,4);
6 FFT<double> fft; // DFT transform object
7 c = fft.fwd(y); // DFT of y
8 x = fft.inv(c); // inverse DFT of c
9

10 cout << "y = " << y.transpose() << endl
11 << "c = " << c.transpose() << endl
12 << "x = " << x.transpose() << endl;
13 return 0;
14 }

We will have x = y in the end.

5.2.3 Discrete Convolution via DFT

All operations with circulant matrices can be implemented by means of Fourier matrices/DFT. We
will now see how this can be done and discuss the benefits of doing so.
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Recall discrete periodic convolution:

(yk) = (pk) ∗n (xk) ⇔ yk =
n−1

j=0
pk−jxj with k = 0, ..., n − 1

In Eigen, we can implement this as given by the formula in O(n2):

Listing 24: Discrete Periodic Convolution in Eigen

1 Eigen::VectorXcd pconv(const Eigen::VectorXcd &u, const Eigen::
VectorXcd &x) {

2 const int n = x.size();
3 Eigen::VectorXcd z = VectorXcd::Zero(n);
4 for (int k = 0; k<n; ++k) {
5 for (int j = 0, l = k; j<= k; ++j, --l)
6 z[k] += u[l] * x[j];
7 for (int j = k+1, l = n-1; j<n; ++j, --l)
8 z[k] += u[l] * x[j];
9 }

10 return z;
11 }

Now we will so how to compute this convolution with DFT. For this we assume that our
implementation of DFT is ”ultra fast”. Later we will discuss the Fast Fourier Transform and see
that this assumption is (somewhat) realistic.

Already in the beginning we have expressed discrete periodic convolutions with circulant ma-
trices. We will do so now again and additionally write the circulant matrix by its DFS.

zk =
n−1

j=0
uk−jxj ←→ z = Cx, C =


ui−j

n−1

i,j=0

z = F−1
n diag(Fnu)Fnx

This reduces the computation to a few multiplications with the Fourier transform and its in-
verse (being how we construct F−1

n ). If this is very fast (by assumption), computing the convolu-
tion suddently also is very fast.

Theorem Convolution Theorem: The discrete periodic convolution ∗n between n-
dimensional vectors u and x is equal to the inverse DFT of the component-wise product
between the DFTs of u and x.

(u) ∗n (x) :=




n−1

j=0
uk−jxj




n−1

k=0

= F −1
n [(Fnu)j(Fnx)j ]nj=1

Cn × Cn Cn

Cn × Cn Cn

periodic convolution

DFT × DFT DFT−1

component-wise multiplication

DFT

Figure 28: Commuting Diagram for Periodic Convolution with DFT
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Implementing convolutions using DFT is easy.

Listing 25: Discrete Periodic Convolutions using DFT in Eigen

1 Eigen::VectorXcd pconvftt(const Eigen::VectorXcd &u, const Eigen
::VectorXcd &x) {

2 Eigen::FFT<double> fft;
3 return fft.inv(((ftt.fwd(u)).cwiseProduct(ftt.fwd(x))).eval())

;
4 }

With this technique we can also compute discrete (non-periodic) convolutions by means of
zero-extension/-padding.

Listing 26: Discrete (Non-Periodic) Convolution using DFT in Eigen

1 Eigen::VectorXcd fastconv(const Eigen::VectorXcd &h, const Eigen
::VectorXcd &x) {

2 assert(x.size() == h.size());
3 const Eigen::Index n = h.size();
4 return pconvfft(
5 (Eigen::VectorXcd(2 * n - 1) << h, Eigen::VectorXcd::Zero(n

-1)).finished(),
6 (Eigen::VectorXcd(2 * n - 1) << x, Eigen::VectorXcd::Zero(n

-1)).finished(),
7 );
8 }

5.2.4 Frequency Filtering via DFT

Going back to the beginning, circulant matrices correspond to some LT-FIR filter. What we have
derived with DFT is: Such circulant matrices correspond to multiplication with Fn, some scaling
(with eigenvalues), and some multiplication with F−1

n = 1
nFn. This corresponds to a basis change,

scaling in this different basis, and reversal of the basis change. What we will see here is that this
intermediate basis in which we perform the scaling has significance (and, thus, is important in
many applications).

If we visualize some columns of a Fourier matrix (the intermediate basis), we see that the real
and imaginary components of those columns correspond to oscillations with different frequencies.

slow oscillation/low frequency fast oscillation/high frequency slow oscillation/low frequency

Figure 29: Imaginary & Real Components of Columns of F16
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We may consider the definition of the Fourier matrix and express its entries by means of cos
and sin. Then we see that the k-th column corresponds to the sampled trigonometric function of
frequency k.

(Fn):,k = [wkj
n ]n−1

j=0 = [e
−2πi

n
kj ]j =


cos

2πkj

n



j
− i


sin

2πkj

n



j

As stated before, applying a filter/circulant matrix corresponds to:

1. computing DFT: ck =
n−1

j=0 yjwkj
n

2. performing scaling on ck

3. computing inverse DFT: yj = 1
n

n−1
k=0 ckw−kj

n

The following reveals that the result yj of the inverse DFT we compute as the last step cor-
responds to the superposition of oscillations of different frequencies. The values of c, i.e., |ck|,
correspond to the strength of different the frequency/mode k in the output signal y. For simplicity
in the notation we consider y ∈ Rn, n = 2m + 1.

nyj = c0 +
m

k=1
ckw−kj

n +
2m

k=m+1
ckw−kj

n

= c0 +
m

k=1
ckw−kj

n + cn−kw(k−n)j
n

= c0 +
m

k=1
ckw−kj

n + cn−kwkj
n property of wn from the beginning

= c0 +
m

k=1
ck (cos(2πkj/n) + i sin(2πkj/n)) + cn−k (cos(2πkj/n) + i sin(−2πkj/n))

= c0 +
m

k=1
ck (cos(2πkj/n) + i sin(2πkj/n)) + ck (cos(2πkj/n) − i sin(2πkj/n))

= c0 +
m

k=1
(Re(ck) + iIm(ck)) (cos(2πkl/n) + i sin(2πkl/n))

+(Re(ck) − iIm(ck)) (cos(2πkl/n) − i sin(2πkl/n))

= c0 +
m

k=1
2Re(ck) cos(2πkl/n) − 2Im(ck) sin(2πkl/n)

= c0 + 2
m

k=1
Re(ck) cos(2πkj/n) − Im(ck) sin(2πkj/n)

Now that we have understood the connection between DFT, signals, and frequencies, we will
continue by discussing how to apply this interpretation of DFT.

Frequency Identification with DFT For illustratory purposes, we will consider an artificially
generated signal with two dominant modes/frequencies:
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Listing 27: Two Mode Signal

1 VectorXd signalgen() {
2 const int N = 64;
3 const ArrayXd t = ArrayXd::LinSpaced(N,0,N);
4 const VectorXd x = ((2*M_PI/N*t).sin() + (14*M_PI/N*t).sin()).

matrix();
5 return x + VectorXd::Random(N);
6 }

Below we see the raw signal. From it, we can’t clearly identify the two dominant frequen-
cies. However, through DFT we get vectors whose content describes the strength of different
frequencies. There we clearly see the frequencies corresponding to indices 2 and 7 dominate.

raw randomized two mode signal frequency decomposition through DFT

Figure 30: Frequency Identification with DFT

Detecting Periodicity in Data The fact that DFT decomposes a signal into its frequencies allows
us to apply DFT to data and see whether there are some dominant frequencies in the dataset. In this
example we consider the count of google searches for the term ”Vorlesungsverzeichnis” (lecture
catalog). The analysis reveals that most requests come at frequencies of 1 term (14 weeks) and 1
semester (1/2 year).

68



Google Searches ”Vorlesungsverzeichnis” Fourier Spectrum

Figure 31: Frequency of Google Searches for ”Vorlesugnsverzeichnis”

’low’ and ’high’ frequencies The columns of Fn correspond to the frequencies which we can
identify with DFT. And it is sufficient to consider the first half of the frequencies, because the last
half columns simply correspond to the complex conjugate of the first half without introducing new
frequencies.

(Fn):,n−k = [wj(n−k)
n ]n−1

j=0 = [w−jk
n ]n−1

j=0 = (Fn):,k, with wn
n = 1

We may get a better intuition for this, when considering the frequencies, which are defined by
the different n-th roots of unity, on the unit circle.

Figure 32: Low and High Frequencies of Fourier Matrices on Unit Circle

Filtering Frequencies Now we have all the necessary background to understand how frequency
filtering by using DFT works. We proceed in those steps:
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1. start: signal y (signal in time-domain)

2. apply DFT to y to get vector c (frequency-domain)

3. do some operations/filtering on the frequencies to get vectors c̃

4. apply inverse DFT to get a time-domain signal again

The operations and filtering in step 3 mostly corresponds to very basic numerical operations.
If those operation are linear operations, we call it linear filtering.

• low-pass filter: This removes high frequencies but lets low frequencies persist. It sets cj = 0
for high frequencies (|j − n

2 | < k for some threshold k)

• high-pass filter: This removes low frequencies but lets high frequencies persist. It sets
cj = 0 for low frequencies (|j − n

2 | ≥ k for some threshold k)

Listing 28: Low- and High-Pass Filter in Eigen

1 void freqfilter(const VectorXd &y, int k, VectorXd &low,
VectorXd &high) {

2 const VectorXd::Index n = y.size();
3 if (n%2 != 0)
4 throw std::runtiem_error("Even vector length required!");
5 const VectorXd::Index m = y.size() / 2;
6

7 Eigen::FFT<double> fft; //DFT helper object
8 VectorXcd c = fft.fwd(y);
9

10 VectorXcd clow = c;
11 // set high frequency coefficients to zero
12 for (int i = -k; j<= k; ++j)
13 clow(m+j) = 0;
14 // (complementary) vector of high frequency coeffieicnts
15 VectorXcd chigh = c - clow;
16

17 // recover filtered time-domain signals
18 low = fft.inv(clow).real();
19 high = fft.inv(chigh).real();
20 }

Sound Filtering & Compression with DFT When given an audio recording as a frequency, we
can perform DFT. The result is the frequency decomposition. In many recordings (such as of the
human voice), only a small subset of all frequencies contain important information. Instead of
storing the audio file, it is often cheaper to only store the weight for some select frequencies.

With such an approach we might also consider that the human ear can only hear certain fre-
quencies. Frequencies not in that range can be neglected for some good compression.

5.2.5 Two-Dimensional DFT

The idea of DFT can be extended from one to multiple dimensions. For instance, we can consider
images (grayscale so that 2D) to be a two-dimensional signal. The applications from the previous
subsection (compression, filtering, ...) then can be transferred to such multi-dimensional signals.
The core to this transfer is to understand the Fourier transform for mulutiple dimensions.
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Matrix Fourier Models We will now discuss how to get from 1D DFT to 2D DFT. In 1D,
DFT corresponds to a change of basis so that we are in the frequency-domain instead of the
time-domain. For 2D, we take the frequency vectors from 1D and ’blow them up’ as tensor
products. The resulting rank-1 matrices can be understood to each correspond to one combination
of frequency for each dimension.

{(Fm):,j(Fn)⊤
:,l}j=0,...,n−1

l=0,...,n−1
⊂ Cm,n

The 2D DFT of Y ∈ Cn,n is

DFTm,n(Y) =
m−1

j=0

n−1

l=0
(Y)j,l(Fm):,j(Fn)⊤

:,l =: C

⇒ (C)k1,k2 =
m−1

j1=0

n−1

j2=0
yj1,j2wj1k1

m wj2k2
n =

m−1

j1=0
wj1k1

m




n−1

j2=0
wj2k2

n yj1,j2



 ,

0 ≤ k1 < m, 0 ≤ k2 < n

The part in the brackets corresponds to 1D DFTn for one row of Y. Then, the outer part computes
the 1D DFTm for the computed DFT/for one column of Y/for one row of DFTn(Y⊤).

(C)k1,k2 =
m−1

j1=0
(Fn(Y)j1,:)k2wj1k1

m =⇒ C = Fm(FnY⊤)⊤ = FmYFn

Knowing the inverse of Fi also lets use quite easily compute the inverse for 2D DFT:

C = FmYFn ⇒ Y = F−1
m CF−1

n = 1
mn

FmCFn

Listing 29: 2D DFT in Eigen

1 template <typename Scalar>
2 void fft2(Eigen::MatrixXcd &C,const Eigen::MatrixBaseyScalar> &Y

) {
3 using idx_t = Eigen::MatrixXcd::Index;
4 const idx_t m = Y.rows(), n = Y.cols();
5 C.resize(m,n);
6 Eigen::MatrixXcd tmp(m,n);
7

8 Eigen::FFT<double> fft;
9 for (idx_t k = 0; k<m; k++) {

10 Eigen::VectorXcd tv(Y.row(k));
11 tmp.row(k) = fft.fwd(tv).transpose();
12 }
13

14 for (idx_t k = 0; k<n; k++) {
15 Eigen::VectorXcd tv(tmp.col(k));
16 C.col(k) = fft.fwd(tv);
17 }
18 }
19

20 template <typename Scalar>
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21 void ifft2(Eigen::MatrixXcd &C, const Eigen::MatrixBase<Scalar>
&Y) {

22 using idx_t = Eigen::MatrixXcd::Index;
23 const idx_t m = Y.rows(), n = Y.cols();
24 fft2(C, Y.conjugate());
25 C = C.conjugate()/(m*n);
26 }

Periodic Convolution of Matrices This paragraph justifies why {(Fm):,j(Fn)⊤
:,l}j=0,...,n−1

l=0,...,n−1
⊂

Cm,n is the set of eigen”matrices” for all 2D convolutions/for the equivalent of the circulant ma-
trices for 2D DFT.

We assume Y = (Fm):,r(Fn)s,: ∈ Cm,n ←→ (Y)i,j = ωri
mωsj

n :

X ×m,n Y := (B(X, Y))k,ℓ =
m−1

i=0

n−1

j=0
(X)i,j(Y)(k−i) mod m,(ℓ−j) mod n

=
m−1

i=0

n−1

j=0
(X)i,jωr(k−i)

m ωs(ℓ−j)
n

=




m−1

i=0

n−1

j=0
(X)i,jωir

mωjs
n



 · ωrk
m ωsℓ

n

=⇒ B(X, (Fm):,r(Fn)s,:)  
eigenmatrix/eigenvector

=




m−1

i=0

n−1

j=0
(X)i,jωri

mωsj
n





  
eigenvalue

(Fm):,r(Fn)s,:

=⇒ B(X, (Fm):,r(Fn)s,:)  
eigenmatrix/eigenvector

=




m−1

i=0

n−1

j=0
(X)i,jωri

mωsj
n





  
eigenvalue

(Fm):,r(Fn)s,:

As (Fm):,j(Fn)⊤
:,l indeed corresponds to the eigenmatrices, we can diagonalize 2D convolution

using those basis matrices. Also, this reveals the eigenvalues, which are entries of DFTm,n(X).

Theorem 2D Convolution Theorem: For any X, Y ∈ Cm,n, we have

X ∗m,n Y = DFT−1
m,n(DFTm,n(X) ⊙ DFTm,n(Y))

where ⊙ stands for the entrywise multiplication of matrices of equal size.

The theorem can be justified analogous to the 1D case. But due to the complexity of dealting
with the additional dimensions, we don’t do so here.

Listing 30: 2D Convolution in Eigen

1 template <typename Scalar1, typename Scalar2, class EigenMatrix>
2 void pmconv(
3 const Eigen::MatrixBase<Scalar1> &X,
4 const Eigen::MatrixBase<Scalar2> &Y,
5 EigenMatrix &
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6 ) {
7 using Comp = std::complex<double>;
8 using idx_t = typename EigenMatrix::Index;
9 using val_t = typename EigenMatrix::Scalar;

10 const idx_t n = X.cols(), m = X.rows();
11 if ((m != Y.rows()) || (n != Y.cols()))
12 throw std::runtime_error("pmconv: size mismatch");
13 Z.resize(m, n);
14 Eigen::MatrixXcd Xh(m, n), Yh(m, n);
15 // Step \ding{202}: 2D DFT of \Blue{$\VY$}
16 fft2(Yh, (Y.template cast<Comp>()));
17 // Step \ding{203}: 2D DFT of \Blue{$\VX$}
18 fft2(Xh, (X.template cast<Comp>()));
19 // Steps \ding{204}, \ding{205}: inverse DFT of component-wise

product
20 ifft2(Z, Xh.cwiseProduct(Yh));
21 }

Deblurring by DFT Before we can deblur, we need to understand blurring. Let’s consider an
image P ∈ Rm,n (being a pixel matrix). The blurring operator B is defined through a point
spread function (PSF) Sk,q, which identified through a small 2L × 2L matrix indexed through
[−L, L]×[−L, L] (L ≪ n, m). Applying the blurring operator to some image (B(P)) corresponds
to computing each pixel by moving the PSF across the image and using its entries as weights for
the new pixel.

(C := B(P))l,j :=
L

k,q=−L

Sk,q(P)(l+k) mod m,(j+q) mod n

Example: Let Sk,q = 1
1+k2+q2 and L = 5.

Original Image Blurred Image

Figure 33: Blurring Example

Through a lengthy but actually rather easy transformation chain, one can see that blurring
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corresponds to a 2D discrete periodic convolution.

cl,j =
L

k=−L

L

q=−L

Sk,q(P)(l+k) mod mi,(j+q) mod n

=
L

k=−L

L

q=−L

S−k,−q(P)(l−k) mod mi,(j−q) mod n

=
L

k=0

L

q=0
S−k,−q(P)(l−k) mod mi,(j−q) mod n

+
L

k=0

−1

q=−L

S−k,−q(P)(l−k) mod mi,(j−q+n) mod n

+
−1

k=−L

L

q=0
S−k,−q(P)(l−k+m) mod mi,(j−q) mod n

+
−1

k=−L

−1

q=−L

S−k,−q(P)(l−k+m) mod mi,(j−q+n) mod n

=
L

k=0

L

q=0
S−k,−q(P)(l−k) mod mi,(j−q) mod n

+
L

k=0

n−1

q=n−L

S−k,−q+n(P)(l−k) mod mi,(j−q) mod n

+
m−1

k=m−L

L

q=0
S−k+m,−q(P)(l−k) mod mi,(j−q) mod n

+
−1

k=m−L

−1

q=n−L

S−k+m,−q+n(P)(l−k) mod mi,(j−q) mod n

Notice that the form of this is quite similar to:

X ∗m,n Y := B(X, Y) =




m−1

i=0

n−1

j=0
(X)i,j(Y)(k−i) mod m,(l−j) mod n




k=0,...,m−1
l=0,...,n−1

with X, Y ∈ Cm,n

P perfectly corresponds to Y. And we can modify S to correspond to X (remember L ≪ n, m):

(S)k,q =






S−k,−q, 0 ≤ k, q ≤ L

S−k+m,−q, m − L ≤ k < m, 0 ≤ q ≤ L

S−k,q+n, 0 ≤ k ≤ L, n − L ≤ q < n

S−k+m,−q+m, m − L ≤ k < m, n − L ≤ q < n

0, else

This corresponds to putting the PSF weights into squares in the corners of S.

74



If we are given a blurred image C and the blurring weights S, we can reconstruct P. From the
2D convolution theorem follows:

P = DFT−1
m,n(DFTm,n(C) ÷entrywise division DFTm,n(S))

We can only perform this deblurring if DFTm,n(S) is element-wise ∕= 0. If that doesn’t hold, we
can intuitively understand the blurring to be such that deblurring isn’t possible.

Listing 31: DFT Based Deblurring in Eigen

1 MatrixXd deblur(const MatrixXd &C, const MatrixXd &S, const
double tol = 1e-3) {

2 const long m = C.rows(), n = C.cols(), M = S.rows(), N = S.
cols();

3 const L = (M-1) / 2;
4 if (M != N)
5 throw std::runtime_error("Error: S not quadratic!");
6 MatrixXd Spad = MatrixXd::Zero(m,n);
7 // filling S matrix
8 Spad.block(0, 0, L+1, L+1) = S.block(L, L, L+1, L+1);
9 Spad.block(m-L, n-L, L, L) = S.block(0, 0, L, L);

10 Spad.block(0, n-L, L+1, L) = S.block(L, 0, L+1, L);
11 Spad.block(m-L, 0, L, L+1) = S.block(0, L, L, L+1);
12 // inverse of blurring operator
13 MatrixXcd SF = fft2(Spad.cast<complex>());
14 // test for invertibility
15 if (SF.cwiseAbs().minCoeff() < tol * SF.cwiseAbs().maxCoeff())
16 std::cerr << "Error: Deblurring impossible!\n";
17 // DFT based deblurring
18 return ifft2(fft2(C.cast<complex>()).cwiseQuotient(SF)).real()

;
19 }

5.3 Fast Fourier Transform (FFT)

In previous sections we have derived methods using DFT. Initially, we assumed that we have some
”ultra-fast” DFT implementation. Otherwise, all those methods would not yield performance
improvements. In this section we take a look at the Fast Fourier Transform, which provides this
fast DFT implementation.

At its core, DFT corresponds to matrix multiplication: c = Fny which can be computed in
O(n2) for n → ∞. But when looking at different implementations of DFT (manual loops, Eigen
matrix multiplication, native FFT function), we see that the performance differs substantially.
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Timing in MATLAB Timing in Eigen

Figure 34: Performance Comparison of different DFT Implementaitons

The reason for the superior performance of the native functions is that they use FFT.

The Fast Fourier Transform (FFT) algorithm was discovered by C.F. Gauss in 1805 and
rediscovered by Cooley & Tuckey in 1965. It is considered one of the most influential/im-
portant algorithms of the century.

5.3.1 FFT Derivation & Complexity

The basic idea of FFT is divide-and-conquer. We will split the computation of DFT into two
smaller DFT computations. Repeating the process of splitting the computation into smaller DFT
computations yields FFT. We will now do the formal derivation of one such ’split’ with n =
2m, m ∈ N for simplicity.

We do the ’split’ by separating even from odd indices:

ck =
n−1

j=0
yje− 2πi

n
jk =

m−1

j=0
y2je

−2πi
n

2jk +
m−1

j=0
y2j+1e− 2πi

n
(2j+1)k

=
m−1

j=0
y2j e− 2πi

m jk
  

=ωjk
m  

=:c̃even
k

+e− 2πi
n

k ·
m−1

j=0
y2j+1 e− 2πi

m jk
  

=ωjk
m  

=:c̃odd
k

=⇒


c̃even
k = DFTm[y2j ]m−1

j=0
c̃odd

k = DFTm[y2j+1]m−1
j=0

, and ck = c̃even
k + e− 2πi

n
k c̃odd

k

Observe the m-periodicity of c̃odd
k and c̃even

k .
If n = 2k, we can implement this by just using this recursion:

Listing 32: FFT for n = 2k

1 VectorXcd fftrec(const VectorXcd& y) {
2 using idx_t = VectorXcd::Index;
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3 using comp = std::complex<double>;
4 // nothing to do for DFT of length 1
5 const idx_t n = y.size();
6 if (n==1) return y;
7 if (n%2 != 0)
8 throw std::runtime_error("size(y) must be even!");
9 const Eigen::Map<const Eigen::Matrix<comp, Eigen::Dynamic,

Eigen::Dynamic, Eigen::RowMajor>> Y(y.data, n/2, 2);
10 const VectorXcd c1 = fftrec(Y.col(0)), c2 = fftrec(Y.col(1));
11 const comp omega = std::exp(-2*M_PI/n*comp(0,1));
12 comp s(1.0, 0.0);
13 VectorXcd c(n);
14 // scaling of DFT of odd components plus periodic copying
15 for (long k = 0; k<n; ++k) {
16 c(k) = c1(k%(n/2)) + c2(k%(n/2))*s;
17 s *= omega;
18 }
19 return c;
20 }

This has the runtime T (n) = O(n) + 2 · T (n
2 ). That leads to O(n log n), which is noticeably

better than O(n2) of the trivial implementation.

Special Case. Of course, this can be generalized for n not even and n ∕= 2k, k ∈ N. One special
generalization is for n = pq where n is not prime.

ck =
n−1

j=0
yjωjk

n
[j=:lp+m]=

p−1

m=0

q−1

l=0
ylp+me

− 2πi
pq

(lp+m)k =
p−q

m=0
ωmk

n

q−1

l=0
ylp+mωl(k mod q)

q

We compute ck not directly but in two steps:
1.:

q−1
l=0 ylp+mw

l(k mod q)
q corresponds to some DFTq. We compute p DFTs of length q.

zm := DFTq[ylp+m]q−1
l=0

(zm)k = zm,k :=
q−1

l=0
ylp+mwlk

q , 0 ≤ m < p, 0 ≤ k < q

2.: With k = rq + s (0 ≤ r < p, 0 ≤ s < q) we can compute ck:

crq+s =
p−1

m=0
e

− 2πi
pq

(rq+s)m
zm,s =

p−1

m=0
(wms

n zm,s)wmr
p , 0 ≤ r < p, 0 ≤ s < q − 1

This is strongly related to 2D DFT. There, we split DFT to separate DFTs for each dimension.
Here, we also split the DFT so that we can consider two DFTs of smaller dimension.

Runtime The execution time for fft depends on the length of the transform. It is fastest for
powers of two. It is almost as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large prime factors. This explains
the high variability of execution time/performance seen in the introductory runtime observations
in MATLAB. It usually pays off to use DFTs on vectors of length of powers of two even if it
requires to artificially length ’data’ vectors noticeably.

77



To actually achieve great performance, this approach has to be implemented in a smart way
(considering caches, computer architecture, compiler optimizations, ...). Thus, don’t lightly im-
plement DFT/FFT by yourself. Generally, use high-quality numerical libraries.
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6 Data Interpolation and Data Fitting in 1D

Our goal here is to perform one-dimensional interpolation:
We are given data points (ti, yi), i = 0, ..., n, n ∈ N, ti ∈ I ⊂ R, yi ∈ R. ti are called
nodes and yi are called values.
Our objective is the reconstruction of a function f : I → R:

• satisfying the n + 1 interpolation conditions (IC) f(ti) = yi, i = 0, ..., n

• and belonging to a set V of eligible functions.

The function f is called the interpolant of the given data set {(ti, yi)}n
i=0.

Through V one can add additional constraints on the model for the data set. Such constraints
may include: Smoothness, differentiability, periodicity, behavior towards limits, ...

1D interpolation is important for numerical applications. Given a few precise measurement
pairs (voltage & current, pressure & density, ...), the task of finding an interpolant means to model
the relationship functionally. A functional model/relation y = f(t) is needed for many numerical
analysis. Of course, math doesn’t restrict us to one dimension. But we restrict ourselves to 1D
here for simplicity.

Functions in Code When implementing 1D interpolation, we usually do so with functors (at
least in C++).

Listing 33: 1D Interpolation Functors

1 class Interpolant {
2 private:
3 // various internal data describing f
4 // can be the coefficients of a basis representation
5 public:
6 // constructor: computation of coefficients of

representation
7 Interpolant(const vector<double>& t, const vector<double>& y

);
8 // evaluation operator for interpolant f
9 double operand() (double t) const;

10 }

Various methods may allow for special functionality such as adding individual data points with
an additional method. But this is the basic framework we will target when implementing different
1D interpolation methods considered below.

6.1 Abstract Interpolation

Here, we will consider how to compute an internal representation of the function given a set of
data points. We consider the special case of eligible functions being from a vector space:

V = span{{t → b0(t)}, ..., {t → bm(t)}} = span{b0, ..., bm}

We call those functions b0, ..., bm the basis functions and generally assume that they are lin-
early independent. (If they are not, just remove linearly dependent ones.) dim V = m + 1. The
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basis property guarantees that every f ∈ V has a unique representation in the basis functions:
∃αj ∈ R so that f(t) =

n
j=0 αjbj(t). The α-values are called basis expansion coefficients.

Finding those coefficients α can be done by solving a linear system of equations. For in-
stance if we only have finitely many bi, the system may be overdetermined so that we can only
approximate.

Ac :=




b0(t0) . . . bm(t0)

...
...

...
b0(tn) . . . bm(tn)








α0
...

αm



 =




y0
...

yn



 =: y

Again, a unique solution only exists if m = n and A is regular. Then: f(t) =
n

j=0(A−1y)jbj(t).
We can understand interpolation for some basis through a linear interpolation operator:

Rn+1 → V

y → f
. Linear interpolation corresponds to a linear map.

Definition Linear Interpolation Operator: An interpolation operator I : Rn+1 →
C0([t0, tm]) for the given nodes t0 < t1 < ... < tn is called linear, if

I(αy + βz) = αI(y) + βI(z), ∀y, z ∈ Rn+1, α, β ∈ R

C0 are the set of continuous function. This contains the V we considered before.

A basis for which A = I ⇔ bi(tj) = δij holds is called a cardinal basis. Then:
f =

n
j=0 yjbj .

Example Piecewise Linear Interpolation:
This is a simple example of a cardinal basis. For V let:

V =


f ∈ C0([t0, tm])|


f(t) = αi + βit, αi, βi ∈ R , t ∈ [ti, ti+1]
f(t) = 0, , otherwise



A simple cardinal basis for which this holds are the ”tent” functions:

Figure 35: Cardinal Basis - Tent Functions

6.2 Global Polynomial Interpolation

In this section we look at how interpolation in 1D works if we want to model our data set with
polynomials. There are many reasons why we want to work with polynomials:

• Polynomials form a vector space. Thus, we can easily compute with them.
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• Multiplying two polynomials has a very predictable effect on the form of the resulting poly-
nomial. Specifically, the new degree is the sum of the two input degrees. (Similarly for
other operations.)

• Polynomials are easy to derive and integrate.

• Polynomials appear in Taylor polynomials with suggests that we can use them well for
approximations.

• Polynomials are easy to evaluate.

Polynomial interpolation is done using the Horner scheme. Let p ∈ Pn be in monomial
representation. Thus, it is represented by a vector of its monomial coefficients. We can compute
p(t) with cost O(n) using the Horner scheme. This algorithm becomes apparent when writing the
polynomial in special form:

p(t) = t(. . . t(t(αnt + αn−1) + αn−2) + · · · + α − 1) + α0

Listing 34: Horner Scheme in C++

1 // IN: p = vector of monomial coefficients starting with leading
coefficient, length = degree + 1

2 // IN: t = vector of evaluation points t_i
3 // OUT: vector of values of polynomial evaluated at t_i
4 Eigen::VectorXd horner(const Eigen::VectorXd &p, const Eigen::

VectorXd &t) {
5 const VectorXd::Index n = t.size();
6 Eigen::VectorXd y{p[0] * VectorXd::Ones(n)};
7 for (unsigned i = 1; i<p.size(); ++i)
8 y = t.cwiseProduct(y) + p[i] * VectorXd::Ones(n);
9 return y;

10 }

6.2.1 Uni-Variate Polynomials

Polynomials in 1D are functions R → R and written as linear combinations on monomials. For
polynomials up to including degree k we have:

Pk := {t → αktk + αk−1tk−1 + · · · + α1t + α0, αj ∈ R}

It is already known that polynomials form a vector space. Here, we will consider interpolation
with V as the set of uni-variate polynomials (i.e., polynomials with one variable). The monomial
basis of Pk is the set of monomials {t → tl}k

l=0. We immediately see that dim Pk = k + 1.

6.2.2 Lagrange Polynomial Interpolation Problem

Definition Lagrange Polynomial Interpolation Problem: Given the set of interpolation
nodes {t0, ..., tn} ⊂ R, n ∈ N, and the values y0, ..., yn ∈ R, compute p ∈ Pn such that it
satisfies the interpolation conditions (IC)

p(tj) = yj for j = 0, ..., n
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Existence and uniqueness follows from considering a cardinal basis {Li}n
i=0 of Pn: Li(tj) =

δij for i, j ∈ {0, ..., n}. Such a cardinal basis is given by the Lagrange polynomial:

Li(t) = (t − t0) . . . (t − ti−1)(t − ti+1) . . . (t − tn)
(ti − t0) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn)

As this is a cardinal basis (which can be easily seen and of which the proof is omitted here),

we get p(t) =
n

i=0 yiLi(t). The interpolation operator


Pn → Rn+1

p → [p(tj)]nj=0
is clearly a linear

mapping. As we can generate any vector in Rn+1 by appropriately choosing p ∈ Pn, this mapping
is surjective. But as dim Pn = dimRn+1 the mapping then must also be bijective. This implies
existence and uniqueness of a solution.

Theorem Existence & Uniqueness of Lagrange Interpolation Polynomial: The general La-
grange polynomial interpolation problem admits a unique solution p ∈ Pn for any (ti, yi).

6.2.3 Polynomial Interpolation Algorithms

Polynomial interpolation is relevant in different use cases with different requirements. We may
be given some initial data set but then want to evaluate the interpolating polynomial in multiple
points. Or we may only want to interpolate in the same point. Or we may want to continue adding
data points to the data set while evaluating only at one point/in various points. Or ...

According to this different requirements, there are different algorithms for polynomial inter-
polation which optimize the runtime for specific use cases.

Multiple Evaluations

• fixed set of nodes {t0, . . . , tn} for i = 0, ..., n

• many different data values yi for i = 0, ..., n

• many arguments xk for k = 1, ..., N with N ≫ 1

We should efficiently compute all p(xk) for p ∈ Pn interpolating in (ti, yi) for i = 0, ..., n.

Listing 35: Multiple Evaluations Interpolation C++ Interface

1 class PolyInterp {
2 private:
3 Eigen::VectorXd t;
4 public:
5 PolyInterp(const Eigen::VectorXd &_t);
6 // evaluation
7 Eigen::VectorXd eval(const Eigen::VectorXd &y, const Eigen::

VectorXd &x) const;
8 }

A straightforward implementation takes the Lagrange polynomials and computes p(xk) =n
i=0 yiLi(xk) with the Lagrange polynomial Li(t) =

n
j=0
j ∕=i

t−tj

ti−tj
. Evaluating a single Lagrange

polynomial has cost n, which we must do n times to compute p(xk). As there are N xk values,
we get the runtime O(n2N).
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But this does a lot of unnecessary computations. We will precompute some of this and reuse
it to improve asymptotic runtime. First, we will precompute:

λi = 1
(ti − t0) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn) , i = 0, ..., n

According to the lectures, this can be done in O(n2). But it should also be possible in O(n).

p(t) =
n

i=0
Li(t)yi =

n

i=0

n

j=0
j ∕=i

t − tj

ti − tj
yj =

n

i=0

n

j=0
j ∕=i

λi(t − tj)yj

=




n

j=0
(t − tj)




n

i=0

λi

t − ti
yi =

n
i=0

λi
t−ti

yi
n

i=0
λi

t−ti

where we use 1 =
n

j=0(t − tj)
n

i=0
λi

t−ti
⇒

n
j=0(t − tj) = 1n

i=0
λi

t−ti

. This is called the

Barycentric interpolation formula.

• Construction/initialization requires computing λi in O(n2).

• Evaluation requires evaluating the Barycentric interpolation formula which can be done in
O(Nn).

Listing 36: Multiple Evaluations Interpolation

1 template<typename NODESCALAR>
2 template<typename RESVEC, typename DATAVEQ>
3 RESVEC BarycPolyInterp<NODESCALAR>::eval(const DATAVEC &y, const

nodeVec_t &x) const {
4 const idx_t N = x.size();
5 RESVEC p(N);
6 for(int i = 0; i<N; ++i) {
7 nodeVec_t z = (x[i] * nodeVec_t::Ones(n) - t);
8 // check if we want to evaluate close to a node
9 const double tref{z.cwiseAbs().maxCoeff()};

10 idx_t k;
11 if (z.cwiseAbs().minCoeff(&k) < tref * std::abs(std::

numeric_limits<NODESCALAR>::epsilon())) {
12 p[i] = y[k];
13 } else {
14 const ndoeVec_t mu = lambda.cwiseQuotient(z);
15 p[i] = (mu.cwiseProduct(y)).sum() / mu.sum();
16 }
17 }
18 return p;
19 }

We check z ≈ 0 elementwise numerically, to avoid division by zero for stability/to avoid
cancellation. If z ≈ 0 for some index k, then we just return yk.
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Single Evaluation

• fixed set of nodes {t0, . . . , tn} with one set of data values yi for i = 0, . . . , n

We will extend this algorithm this in the end so that the set of data points is extendable.

• one argument x

We should efficiently compute all p(xk) for p ∈ Pn interpolating (ti, yi) for i = 0, . . . , n.

Listing 37: Single Evaluation Interpolation C++ Interfact

1 class PolyInterp {
2 private:
3 public:
4 double eval(const Eigen::VectorXd &t, const Eigen::VectorXd

&y, double x);
5 }

The approach for this is called partial polynomial interpolation. Let pk,l ∈ Pl−k be defined
as pk,l(tj) = yj , j = k, ..., l to interpolate a certain ’subset’ of the given data points. Then, we
compute p recurisvely.

• base case: pk,k(x) ≡ yk (constant polynomial)

• pk,l(x) = (x−tk)pk+1,l(x)−(x−tl)pk,l−1(x)
tl−tk

= pk+1,l(x) + x−tl
tl−tk

(pk+1,l(x) − pk,l−1(x)) for
0 ≤ k ≤ l ≤ n

Althrough we require 0 ≤ k ≤ l ≤ n there seems no reason why the points should be ordered
by their x-coordinate, i.e., by nothing it seems necessary that t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn must
hold. The correctness of partial polynomial interpolation, i.e., that the resulting p satisfies the
interpolation conditions, can be shown by induction.

The evaluation according to this recursion can be done with the Aitken-Neville scheme/algo-
rithm for some point x.

Listing 38: Aitken-Neville Scheme Evaluation in C++

1 double ANipoleval(const VectorXd& t, VectorXd y,const double x){
2 for (int i = 0; i<y.size(); ++i) {
3 for (int k = i-1; k >= 0; --k) {
4 y[k] = y[k + 1] + (y[k + 1]-y[k])*(x-t[i])/(t[i]-t[k]);
5 }
6 }
7 return y[0];
8 }

Figure 36: Aitken-Neville Scheme
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The computational cost is O(n2) with memory O(n). The polynomial interpolant is never di-
rectly computed. For a single evaluation this is not asymptotically faster compared to the approach
using the Barycentric interpolation formula. However, we can very simply extend this so that we
can add more data points. We will simply consider an additional yi and run one more iteration of
the Aitken Neville scheme. This can be done in O(n). Furthermore, evaluation then is trivially
O(1) at any point. Memory utilization stays at O(n), which is very efficient.

Listing 39: Partial Polynomial Interpolation and Atiken-Neville based Interpolation

1 class PolyEval {
2 private:
3 public:
4 // constructor taking the evaluation points as argument
5 PolyEval(double x);
6 // add another data point and update internal information
7 void addPoint(t,y);
8 // value of current interpolating polynomial at x
9 double eval(void) const;

10 }

Extrapolation to Zero This is a somewhat special case of interpolation. The goal is to evaluate
some function as some specific point. Without loss of generality we can assume that we want to
compute φ(0) for some smooth φ : [−1, 1] → R. We have a function in procedural form (i.e., a
C++ function double psi(double h)). But this function is not reliable for |h| ≪ 1. Thus,
we want to interpolate the function φ so that it is most accurate at x = 0. To do so, we can use an
arbitrary data set which we gain from evaluating φ for stable points.

Example: Let f ∈ C2 and ψ(h) := f(x+h)−f(x−h)
2h the difference quotient that approxi-

mates the derivative at x = 0. We can’t evaluate this for h = 0 and due to cancellation
evaluations close to zero will be unreliable.

Here we think that polynomial approximation is a good approach after looking at the Taylor
approximation. For small h, the remainder will be zero and the polynomial approximation will be
close to perfect.

φ(h) =
L

l=0

f (k)(a)
k! hl + O(hL+1) =

L

l=0
clh

l + O(hL+1)

One question remains: How to get this approximation polynomial. The idea to approximate
this polynomial so that we get a close to perfect approximation for h = 0 is:

1. Pick h0, . . . , hn for which φ can be evaluated safely.

2. Evaluate φ for all those hi.

3. Then we conclude φ(0) ≈ p(0) with the extrapolating polynomial p ∈ Pn.

We say extrapolation here, because the evaluation point is not in the interval covered
by the nodes.

We compute p(0) using the Aitken-Neville scheme. As discussed, it is update friendly for a
single evaluation so that we can continue to add hi until we are satisfied with our approximation
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(if the procedural φ allows further evaluations). Alternatively and as implemented below, we can
define an upper bound for the data set size and just terminate before the entire set is considered if
the error between iterations vanishes below some absolute or relative tolerance.

Listing 40: Extrapolation to Zero with Aitken-Neville

1 template <class Function>
2 double diffex(Function& f, const double x, const double h0,

const double rtol, const double atol) {
3 const unsigned nit = 10;
4 VectorXd h(nit); h[0] = h0;
5 VectorXd y(nit);
6 y[0] = (f(x+h0)-f(x-h0))/(2*h0);
7

8 for (unsigned i = 1; i<nit; ++i) {
9 h[i] = h[i-1]/2;

10 y[i] = (f(x+h[i])--f(x-h[i]))/(2.0 * h[i])
11 for (int k = i-1; k>=0; --k)
12 y[k] = y[k+1] - (y[k+1]-y[k]) * h[i]/(h[i]-h[k]);
13 cosnt double errest = std::abs(y[i]-y[i-1]);
14 if (errest < rtol*std::abs(y[i-1]) || errest < atol)
15 break;
16 }
17 return y[0];
18 }

Compared to directly evaluating (especially for computing derivatives as illustrated in the
example), on the one hand, this enables much higher accuracy. But on the other hand, it also
allows for much better control over the error so that we can stop early if we don’t require a high
accuracy but can also keep going for quite long if we want the best possible accuracy.

Newton Basis and Divided Differences This may be the most general case of all.

• extendable set of nodes {t0, . . . , tn} with data values {y0, . . . , yn} for i = 0, . . . , n

• arbitrary arguments x for evaluation

Listing 41: Newton Basis and Divided Differences Interpolation Interface in C++

1 class PolyEval {
2 private:
3 public:
4 PolyEval();
5 void addPoint(t,v);
6 Eigen::VectorXd operator() (const Eigen::VectorXd &x) const;
7 }

So far we considered two approaches. Aitken-Neville only enabled evaluation at one point.
The Barycentric interpolation formula requires recomputing all coefficients, i.e., repeat the entire
setup phase, if an additional data point is added. To avoid this, we introduce a new basis for the
space of polynomials which is update friendly: The Newton basis.

• N0(t) = 1
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• Nk(t) =
k−1

i=0 (t − ti) for k = 1, . . . , n

{N0, . . . , Nn} is a basis of Pn. The polynomials of the basis are linearly independent, because
all polynomials have different degree. We consider this basis to be update friendly because of its
property Nk(tj) = 0 for j = 0, . . . , k − 1. The interpolating conditions (IC) for this basis (as for
any basis) are expressed through:

a0N0(tj) + a1N1(tj) + · · · + anNn(tj) = yj , j = 0, ..., n

=⇒





N0(t0) N1(t0) . . . Nn(t0)
N0(t1) N1(t1) . . . Nn(t1)

...
...

...
N0(tn) N1(tn) . . . Nn(tn)









a0
a1
...

an




=





y0
y0
...

yn





=⇒





1 0 . . . 0

1 (t1 − t0) . . .
...

...
...

... 0
1 (tn − t0) . . .

n−1
i=0 (tn − ti)









a0
a1
...

an




=





y0
y1
...

yn





From this we can directly see that ak only depends on (tj , yj) with 0 ≤ j ≤ k. There is no
change of a0, . . . , an if (tn+1, yn+1) is added.

Efficient Evaluation of a Polynomial in Newton Form If we want to work with this ba-
sis, one task we can’t avoid is evaluating the polynomial for some x given a set of coefficients.
Evaluation is possible similar to the Horner scheme in an analogous special form:

p(t) = a0N0(t) + a1N1(t) + · · · + anNn(t)

= a0 + a1(t − t0) + a2(t − t0)(t − t1) + · · · + an

n−1

j=0
(t − tj), t ∈ R

= a0 + (((an(t − tn) + an−1)(t − tn−1) + an−2) · · · + a1)(t − t1)

Evaluation for one point is O(n). Evaluating k points takes O(nk).

Listing 42: Evaluating Polynomial in Newton Form

1 Eigen::VectorXd evalNewtonForm(
2 const Eigen::VectorXd &t,
3 const Eigen::VectorXd &a,
4 const Eigen::VectorXd &x
5 ) {
6 const unsigned int n = a.size() - 1;
7 const Eigen::VectorXd ones = VectorXd::Ones(x.size());
8 Eigen::VectorXd p{a[n] * ones*}
9 for (int j = n-1; j>=0; --j) {

10 p = (x- t[j]*ones).cwiseProduct(p) + a[j]*ones;
11 }
12 return p;
13 }
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Divided Differences Algorithm Another unavoidable task is to compute the coefficients of
the polynomial in Newton basis given some data points and to extend the coefficients when given
additional data points. We need to find aj so that p(t) =

n
j=0 ajNj(t).

This algorithm employs an approach similar to partial interpolation as discussed before. Notice
that Nj has degree j and leading coefficient 1. No other Ni has degree j. Thus, aj is the leading
coefficient of the partial interpolating polynomial p0,j . If we continue and add more points, we
have already argued that aj will remain unchanged. So its safe to compute aj as the leading
coefficient of p0,j . We will use the following notation to denote leading coefficients from now on:

y

tl, . . . , tm


for the leading coefficient of pl,m

specifically: aj = y

t0, ..., tj



Partial interpolation reminds us of the Aitken-Neville scheme. We will use its approach to
compute the leading coefficients.

• y[ti] = yi

• y[ti, ..., ti+k] = y[ti+1,...,ti+k]−y[ti,...,ti+k−1]
ti+k−ti

This follows swiftly from (x−tk)pk+1,l(x)−(x−tl)pk,l−1(x)
tl−tk

as derived as part of the Aitken-
Neville scheme.

This is called the divided differences recursion for obvious reason. The divided differences aj can
be computed using this scheme/recusion. The following implementation does so slightly different
from the Atiken-Neville scheme. It starts at the bottom instead of at the top so that the divided
differences/quotients are in the vector in the end.

Figure 37: Divided Differences Evaluation Order

Listing 43: Divided-Differences

1 void divdiff(const VectorXd &t, VectorXd &y) {
2 const int n = y.size() - 1;
3 for (int l = 1; l<n; ++l) {
4 for (int j = n-l; j<n; ++j) {
5 y[j+1] = (y[j+1] - y[j]) / (t[j+1]-t[n-l]);
6 }
7 }
8 }

This implementation is slightly different than in the lecture document as it seemed flawed.
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We can use this only to compute the initial coefficients. Extending the data set is not pos-
sible due to the order of performing the scheme. It overwrites values we would need for
extension. Extending the dataset is considered in the next section.

This evaluation runs in O(n2) - just as Aitken-Neville did.

Implementation in Eigen Here, we will put everything together to enable evaluating in
many points as well as adding data points. Remember the LSE we introduced earlier for the
coefficients aj . We will use is now to extend the dataset.





1 0 . . . 0

1 (t1 − t0) . . .
...

...
...

... 0
1 (tn − t0) . . .

n−1
i=0 (tn − ti)









a0
a1
...

an




=





y0
y1
...

yn





an =
n−1

i=0
(tn − ti)−1



yn −
n−1

k=0

k−1

i=0
(tn − ti)ak



=
n−1

i=0
(tn − ti)−1yn −

n−1

k=0

n−1

i=k

(tn − ti)−1ak

= (...(((yn − a0)/(tn − t0) − a1)/(tn − t1) − a2)/... − an−1)/(tn − tn−1)

Listing 44: Divided Differences Extension & Evaluation in C++

1 class PolyEval {
2 private:
3 std::vector<double> t; // Interpolation nodes
4 std::vector<double> y; // Coefficients in Newton

representation
5 public:
6 PolyEval(); // Idle constructor
7 void addPoint(double t, double y); // Add another data point
8 // evaluate value of current interpolating polynomial at \

Blue{$x$},
9 double operator() (double x) const;

10 };
11

12 void PolyEval::addPoint(double td, double yd) {
13 t.push_back(td);
14 y.push_back(yd);
15 int n = t.size();
16 for(int j = 0; j<n-1; j++)
17 y[n-1] = ((y[n-1]-a[j]) / (t[n-1]-t[j]));
18 }
19

20 double PolyEval::operator() (double x) const {
21 double s = y.back();
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22 for (int i = y.size()-2; i>=0; --i)
23 s = s * (x-t[i]) + y[i];
24 return s;
25 }

Both functions run in O(n) each.
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7 Iterative Methods for Non-Linear Systems of Equations

We have already discussed solving linear systems of equations when they are regular as well as
overdetermined. But we did not yet look at NON-linear systems of equations at all. This section
is dedicated to such non-linear systems of equations (NLSE). There is no general solution scheme
for NLSE. Hence, we can only discuss heuristics.

An abstract NLSE can be written as F (x) = 0 where F : D ⊂ Rn → Rn (n ∈ N) is an
arbitrary function. n defines the number of (scalar) equations as well as the number of (scalar)
unknowns. We always have #unknowns = #equations. As NLSE also contain LSE as a
subset, we can express those in this formalism. Ax = b, A ∈ Rn,n, b ∈ Rn would be expressed
as F (x) = 0 with F (x) = b − Ax.

Although F (x) may look very simple, it may contain an arbitrarily complex expression. Thus,
there is no general theory for solving such problems. Only for specific examples/instances, a the-
ory can be developed. Furthermore, F may often be only available in procedural form. Meaning,
we can evaluate F for a specific argument but don’t know its functional expression.

7.1 Iterative Methods

7.1.1 Fundamental Concepts

Iterative methods for (approximately) solving a non-linear system of equations F (x) = 0 are
algorithms, which generate an arbitrarily long sequence


x(k)



k
of approximate solutions. Those

approximate solutions may be vectors if x ∈ Rn, n > 1. x(k) is the k-th iterate.
A fundamental question is, whether this series converges to our target value x∗, i.e., whether

x∗ := limk→∞ x(k) exists. For the iterative method to be any good, this is necessary.

m-point iteration computes the next iterate based on m previous iterates.

x(k+1) = φ(x(k), . . . , x(k−m+1))

To use this approach, we need some initial vectors to start the estimation. Those vectors are called
initial guesses. For an m-point iterative guesses, we need m initial guesses: x(0), . . . , x(m−1).

1-point iteration is the special case with m = 1 and x(k+1) = φ(x(k)).

One very important property of iterative methods is consistency. It is necessary to make many
meaningful statements about iterative methods. Usually, we only consider iterative methods which
satisfy consistency. Besides, its a very reasonable property.

Definition Consistency of Iterative Methods: A stationary m-point iteratie method

x(k+1) = φF (x(k), . . . , x(k−m+1)), m ∈ N

is consistent with the non-linear system of equations F (x) = 0, if and only if

φF (x∗, . . . , x∗) = x∗ ⇔ F (x∗) = 0

If some iterative method φF (a) converges, (b) φF is continuous, and (c) φF is consistent,
then it must converge to our target value x∗. Unfortunately, the problem mostly is that for many
methods there is no guarantee that it converges. The convergence heavily depends on where the
convergence starts, i.e., the initial guesses. If one starts close enough to a solution, the sequence
might converge nicely. But if one starts further away, the sequence may go anywhere. This is a
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challenge, because a-priori one doesn’t know how close a guess is to the solution. Other important
questions are: How fast do the sequences converge to solutions? What is the region of (local)
convergence?

Figure 38: Local Convergence

7.1.2 Speed of Convergence

If some iterative method converges, we want to know how fast it converges. Hence, we classify
iterative methods according to their speed of convergence.

With the speed of convergence we measure how fast the error goes to zero:
k = x(k+1) − x∗ → 0.

Definition Linear Convergence: A sequence x(k), k = 0, 1, 2, ... in Rn converges linearly
to x∗ ∈ Rn if and only if

∃0 < L < 1 : x(k+1) − x∗ ≤ Lx(k) − x∗, ∀k ∈ N0

The smallest possible L is called the rate of convergence.

Here, x(k) − x∗ → 0 is guaranteed by a geometric decay of the error.

Detecting Linear Convergence If we want to identify linear convergence in a numerical ex-
periment, we assume sharpness of the convergence. This means, instead of x(k+1) − x∗ ≤
Lx(k) − x∗ we assume x(k+1) − x∗ ≈ Lx(k) − x∗ ⇔ k+1 ≈ Lk. When looking at
tabulated data, we can compute k+1

k
for all k. If this quotient is ≈ L < 1 for some L for all

values, we have an indication for linear convergence.
There is also a graphical approach. If we have linear convergence, then k ≈ Lk0 ⇒ log k ≈

k log L + log 0. Thus, in a lin-log plot the points should be on a line. The slope of the line gives
us the rate of convergence. Note that the slope of the line must be negative as L < 1.
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Example: We consider the scalar 1-point iteration x(k+1) := x(k) + cos(x(k))+1
sin(x(k)) , k ∈ N0. If

x(k) converges, it must converge to a value so that cos of that value is −1.
We can compute the sequence for different initial guesses and plot the computed values
with the associated error. This reveals a rate of convergence of ≈ 0.5.

Figure 39: Determining the Rate of Convergence with Linear Convergence

In the error computation, x∗ has been replaced by x(15) for convenience.

Linear convergence is just a special case of general order p convergence.

Definition Order of Convergence: A convergent sequence x(k), k = 0, 1, 2, ... in Rn with
limit x∗ ∈ Rn converges with order p (usually p ≥ 1) if

∃C > 0 : x(k+1) − x∗ ≤ Cx(k) − x∗p, ∀k ∈ N0

If p = 1 (linear convergence) we additionally require that C < 1.

C is called the rate of convergence. According to our definition of the order of convergence:
C := supk≥0

k+1
p

k
. However, in the literature it is common to also define it as lim k+1

p
k

.

Detecting Order p > 1 Convergence Again, we assume sharpness of the convergence, i.e.,
x(k+1) − x∗ ≈ Cx(k) − x∗p ⇔ k+1 ≈ Cp

k for some C and p.

⇒ log k+1 ≈ log C + p log k

=⇒ log k+1 ≈ log C + p log k and log k ≈ log C + p log k−1

⇒ p ≈ log k+1 − log k

log k − log k−1

We then create a table and print the computed quotient for many k and observe whether it is ap-
proximately constant. But notice for large k this quotient will become unreliable due to roundoff
as k ≈ k−1 ≈ k+1.

In the below example one can see that with quadratic convergence the number of correct digits
doubles with each iterative step. This is very fast convergence. m correct digits mean that the
relative error is below 10−m. If we denote the relative error with δk: x(k) = x∗(1 + δk).

|x(k+1) − x∗| ≈ C|x(k) − x∗|2 ⇒ |δk+1x∗| ≈ C|δkx∗|2 ⇒ δk+1 ≈ C|x∗|δ2
k

assuming x∗ ∕= 0 so that the relative error exists
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This has to hold for all iterations of order 2 as can be seen from k+1 ≤ Cp
k. Similar state-

ments also hold for order 3 convergence etc.

Example: This is a famous example of converges to the square root of some number a > 0.

x(k+1) = 1
2(x(k) + a

x(k) ) ⇒ |x(k+1) −
√

a| = 1
2x(k) |x(k) −

√
a|2

This shows that the error in some step is the squared error of the previous step multiplied
with some factor. And we can give the upper bound 1

2
√

a
for that factor as x(k) ≥

√
a. Thus,

this is order two convergence, where we can also give the constant: p = 2 and C = 1
2
√

a
.

Figure 40: Square Root Iteration Error & Order

7.1.3 Termination Criteria

If we designed φ well, it will converge to the solution x∗. However, almost always none of the
sequence elements will correspond to the solution perfectly. So, we must decide when to stop
computing next elements in the sequence as we can’t do infinitely many iterations.

Let’s assume the iterative method produces the sequence (x(k))k∈N. We then want that the
current iterate is sufficiently close to the solution if we stop in step K. We consider either an
absolute or a relative tolerance.

• x(K) − x∗ ≤ τabs, τabs being the prescribed (absolute) tolerance

• x(K) − x∗ ≤ τrelx∗, τrel being the prescribed (relative) tolerance

The ideal stopping rule is to stop at step K = argmin



k ∈ N0 : x(k) − x∗ ≤


τabs

τrelx∗



.

But this is not accessible, because we don’t know x∗ as it is the value we try to compute. Hence,
we must consider practical stopping rules.

• A priori termination rules set some fixed step K after which we stop.

This works if we have precise information on the convergence. For instance, we may
know that it converges linearly and it’s rate of conversion. Then, we can easily predict when
accuracy requirements are met.

• A posteriori termination rules rely on the iterates while they are comptued.

This is relevant, because we rarely have precise information beforehand. An example
is residual-based termination as discussed next.

94



Residual-Based Termination We step as soon as F (x(k)) ≤ τ for some prescribed tolerance.
But unfortunately, this tells us little about the error norm x(k) − x∗.

F (x(k)) small ∕⇒ |x − x∗| small F (x(k)) small ⇒ |x − x∗| small

Figure 41: Problem with Residual-Based Termination

Correction-Based Termination The heuristic is to stop the iteration when the computed x(k)

only change very little between iterations. We stop the convergent iteration {x(k)}k∈N0 when

x(k+1) − x(k)
 ≤


τabs

τrelx(k+1)

x(k+1) − x(k) is often called the correction. This is especially justified for order p iterations
where p > 1, because we have seen that the iteration will converge very fast. Meaning, x(k+1) ≈
x∗ as the error shrinks geometrically.

Stationary in M Termination With real numbers, most iterations will never settle on one value.
But remember that machine arithmetics is discrete. So once we are close enough to the target
value we can’t get any closer in machine numbers and will settle on one machine number. This
has a guaranteed relative error equal to EPS (machine precision).

This is suitable (only) for special functions. In many cases it is ’overkill’ and not so relevant.

A Posteriori Termination for Linear Convergence This shows that the usefulness of correction
based termination can also be theoretically justified for linear convergent sequences.

x(k) − x∗ = x(k) − x(k+1) + x(k+1) − x∗ ≤ x(k+1) − x∗ + x(k+1) − x(k)
≤ Lx(k) − x∗ + x(k+1) − x(k)

=⇒ (1 − L)x(k) − x∗ ≤ x(k+1) − x(k)

=⇒ x(k) − x∗ ≤ 1
1 − L

x(k+1) − x(k)

=⇒ x(k+1) − x∗ ≤ L

1 − L
x(k+1) − x(k)

With the final formula we can always compute an upper bound for the error. And although L is
usually not known, we can just use a coarse upper estimation for L and still get a good termination
criterion. Due to such estimations and the estimations in the derivation we may compute a value
much more precise than required, but it will have at least the required precision in any case.
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Example: Consider again x(k+1) = x(k) + cos x(k)+1
sin x(k) ⇒ x(k) → π, for x(0) close to π.

From numerical experiments, we can conclude that L ≈ 1
2 .

The following table shows the actual error and error estimation. This showcases that the
actual error may be much lower, but the error estimation still is accurate.

k
x(k) − π

 L
1−L

x(k) − x(k−1)
 slack of bound

1 2.191562221997101 4.933154875586894 2.741592653589793
2 0.247139097781070 1.944423124216031 1.697284026434961
3 0.122936737876834 0.124202359904236 0.001265622027401
4 0.061390835206217 0.061545902670618 0.000155067464401
5 0.030685773472263 0.030705061733954 0.000019288261691
6 0.015341682696235 0.015344090776028 0.000002408079792
7 0.007670690889185 0.007670991807050 0.000000300917864
8 0.003835326638666 0.003835364250520 0.000000037611854
9 0.001917660968637 0.001917665670029 0.000000004701392

10 0.000958830190489 0.000958830778147 0.000000000587658
11 0.000479415058549 0.000479415131941 0.000000000073392
12 0.000239707524646 0.000239707533903 0.000000000009257
13 0.000119853761949 0.000119853762696 0.000000000000747
14 0.000059926881308 0.000059926880641 0.000000000000667
15 0.000029963440745 0.000029963440563 0.000000000000181

7.2 Fixed-Point Iterations

We already discussed that fixed-point iteration is a special case of m-point iteration.

Definition Fixed-Point Iteration: A fixed point iteration is defined by iteration function
φ : U ⊂ Rn → Rn. With an initial guess x(0) ∈ U , the iteration is

(x(k))k∈N0 : x(k+1) := φ(x(k))

Let x∗ = limk→∞ x(k). If φ is continuous, we can take the limit into φ and get x∗ = φ(x∗).
So, x∗ is a so called fixed point of φ, which is where the name of this special case comes from.

7.2.1 Consistent Fixed-Point Iterations

Definition Consistency of Fixed Point Iterations: A fixed point iteration x(k+1) = φ(x(k))
is consistent with F (x) = 0 if, for x ∈ U ∩ D,

F (x) = 0 ⇐⇒ φ(x) = x

I.e., every fixed point is a solution.

Of course the question rises, how to find a consistent fixed point iteration given some F . The
general construction follows two steps:

1. Rewrite equivalently F (x) = 0 ⇔ φ(x) = x

2. Use the fixed point iteration x(k+1) := φ(x(k))
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3. Hope that φ converges.

Definition Contractive Fixed-Point Iteration: φ : D ⊆ Rn → Rn is contractive (w.r.t.
norm  · ||), if for some L < 1 and for all x, d ∈ D

φ(x) − φ(y) ≤ Lx − y

Theorem Banach’s Fixed Point Theorem: If φ : Kn → Kn is contractive, then (x(k))
converges to a unique fixed point from any x(0) at least linearly.
(Not discussed or proven in the lecture but probably relevant.)
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Example: We consider the function F (x) = xex−1, x ∈ [0, 1] of which we want to find the
root. From this, we can find many different fixed-point forms, i.e. φi(x) = x ⇔ F (x) = 0.
Some are:

• φ1(x) = e−x

• φ2(x) = 1+x
1+ex

• φ3(x) = x + 1 − xex

Those functions and their iterations behave very differently.

k x(k+1) := Φ1

x(k)


x(k+1) := Φ2


x(k)


x(k+1) := Φ3


x(k)



0 0.500000000000000 0.500000000000000 0.500000000000000
1 0.606530659712633 0.566311003197218 0.675639364649936
2 0.545239211892605 0.567143165034862 0.347812678511202
3 0.579703094878068 0.567143290409781 0.855321409174107
4 0.560064627938902 0.567143290409784 -0.156505955383169
5 0.571172148977215 0.567143290409784 0.977326422747719
6 0.564862946980323 0.567143290409784 -0.619764251895580
7 0.568438047570066 0.567143290409784 0.713713087416146
8 0.566409452746921 0.567143290409784 0.256626649129847
9 0.567559634262242 0.567143290409784 0.924920676910549

10 0.566907212935471 0.567143290409784 -0.407422405542253

Figure 42: Iteration Values

k
x(k+1)

1 − x∗


x(k+1)
2 − x∗


x(k+1)

3 − x∗


0 0.067143290409784 0.067143290409784 0.067143290409784
1 0.039387369302849 0.000832287212566 0.108496074240152
2 0.021904078517179 0.000000125374922 0.219330611898582
3 0.012559804468284 0.000000000000003 0.288178118764323
4 0.007078662470882 0.000000000000000 0.723649245792953
5 0.004028858567431 0.000000000000000 0.410183132337935
6 0.002280343429460 0.000000000000000 1.186907542305364
7 0.001294757160282 0.000000000000000 0.146569797006362
8 0.000733837662863 0.000000000000000 0.310516641279937
9 0.000416343852458 0.000000000000000 0.357777386500765

10 0.000236077474313 0.000000000000000 0.974565695952037

Figure 43: Iteration Errors

φ1 converges linearly, φ2 converges very fast (approximately quadratic), and φ3 is erratic/-
does not converge
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7.2.2 Convergence of Fixed-Point Iterations

In this subsection we will discuss whether we can make predictions regarding the convergence of
an iteration based on its functional form/without a numerical experiment.

The following figure illustrates how the derivative is crucial for convergence for initial guesses
close to x∗. Note that this is not definitive but just an indicator for initial guesses close to x∗. If we
start far away, anything may happen as we don’t know the function behavior there and in between
our target point.

Convergence if |φ′(x)| < 1 Divergence if |φ′(x)| > 1

Figure 44: Convergence of Fixed-Point Iteration based on Derivative

Lemma Sufficient Condition for Local Linear Convergence of Fixed Point Iteration:
If φ : U ⊂ Rn → Rn, φ(x∗) = x∗, φ differentiable in x∗, and Dφ(x∗)2 < 1, then the
fixed point iteration

x(k+1) := φ(x(k))

converges locally and at least linearly that is

∃0 ≤ L < 1 : x(k+1) − x∗ ≤ Lx(k) − x∗, ∀k ∈ N0

provided that the initial guess x(0) belongs to some neighborhood of x∗.

As justification (not a proof!) consider the Taylor approximation. If we are sufficiently close,
the remainder can be neglected and this is guaranteed to converge. But if we are not sufficiently
close, the remainder may prevent convergence.

x(k+1) − x∗ = φ(x(k)) − φ(x∗) = Dφ(x∗)(x(k) − x∗) + O(x(k) − x∗)
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Lemma Higher Order Local Convergence of Fixed Point Iterations: If φ : U ⊂ R → R is
m + 1 times continuously differentiable, φ(x∗) = x∗ for some x∗ in the interior of U , and
φ(l)(x∗) = 0 for l = 1, ..., m, m ≥ 1, then the fixed point iteration converges locally to x∗

with order ≥ m + 1.

This can be understood with the same Taylor polynomial argument as for the previous lemma.
It follows from the fact that from φ(l)(x∗) = 0 we get that the next summands in the Taylor
polynomial are zero and the remainder is O(x(k) − x∗m+1).

7.3 Finding Zeros of Scalar Functions

This considers the simplest case of NLSEs with F : U ⊂ R → R. We want to find x∗ ∈ U so that
F (x∗) = 0.

7.3.1 Bisection

We assume that F is continuous and use the intermediate value theorem from Analysis. Re-
member it as: If a, b ∈ U so that F (a)F (b) < 0 (i.e., a and b have different signs) then
∃x∗ ∈] min{a, b}, max{a, b}[ so that F (x∗) = 0.

We want to enclose x∗ in geometrically decreasing intervals [a(k), b(k)] on which f changes
sign: f(a(k))f(b(k)) ≤ 0 (equality with 0 iff we have found the root/zero exactly with one border).
Because this approach is very simple we won’t explain it in detail but just give its implementation
as explanation:

Listing 45: Root of Scalar Function with Bisection

1 template <typename Func, typename Scalar>
2 Scalar bisect(Func&& F, Scalar a, Scalar b, Scalar tol) {
3 if(a>b)
4 std::swap(a,b);
5 if(F(a)*F(b)>0)
6 throw "f(a) and f(b) have same sign";
7 static_assert(std::is_floating_point<Scalar>::value,
8 "Scalar must be a floating point type");
9 int v = F(a)<0 ? 1 : -1;

10 Scalar x = (a+b)/2; // determine midpoint
11 while(b-a > tol) { // if tol=0, termination relies on machine

arithemtic
12 assert(a<=x && x<=b);
13 if (v*F(x)>0)
14 b=x;
15 else
16 a=x;
17 x = (a+b)/2;
18 }
19 return x;
20 }
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This is not quite an iterative method in a strict sense, because it does not compute a sequence
of approximate zeroes but intervals. But we can just set x(k) to one of the end points (:= a(k) for
example) or even their average, which will generate a sequence.

This has a ”linear-type” convergence with the rate 1
2 , because |b(k) − a(k)| ≤ 2−k|b − a|. As

our sequence element and the root have to lie in the interval [a(k), b(k)], we get:

|x(k) − x∗| ≤ 2−k|b − a|

Despite its simplicity, this method has various advantages:

• Because it guarantees convergence, we call this a robust method. Also, the convergence rate
is known.

• This method does not require any information on differentiability. Instead we only need
evaluation of F at different points. We say, it is a ”derivative-free” method.

• We can apply this method to many functions. Specifically, all continuous methods.

The price we pay is that this method is not very fast.

7.3.2 Model Function Methods

The most important iterative method is the Newton method. We dedicate the entire next subsection
to study it. But we already introduce it in a limited form for one dimension here. The Newton
method itself is a special case of a certain approach: Model function.

The general idea of model function methods is as follows: Given recent iterates (approximate
zeroes) x(k), x(k−1), . . . , x(k−m+1), m ∈ N:

1. replace F with a k-dependent model function F̃k which is based on the function values
F (x(k)), F (x(k−1)), . . . , F (x(k−m+1)) and, possibly, derivative values.

2. Then, x(k+1) := zero of F̃k is found analytically given F̃k.

This means that locally around x(k) we approximate F (x) with some Fk(x).

Newton Method We assume that F ∈ C1 (continuously differentiable) and that we have the
derivative F ′ of F . Here, the model function F̃ is based on the tangent function Gf in (x(k), F (x(k))).
So we get F̃ (x) = F (x(k)) + F ′(x(k))(x − x(k)). Then:

x(k+1) = x(k) − F (x(k))
F ′(x(k))

So that this works properly we have to assume that F ′(x(k)) ∕= 0.

Figure 45: Newton Method
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Listing 46: Scalar Newton Method in Eigen

1 template <typename FuncType, typename DervType, typename Scalar>
2 Scalar newton1D(
3 FuncType &&F,
4 DervType &&DF,
5 const Scalar &x0,
6 double rtol,
7 double atol
8 ) {
9 Scalar s, x = x0;

10 do {
11 s = F(x)/DF(x);
12 x -= s;
13 } while((std::abs(s)>rtol*std::abs(x)) && (std::abs(s)>atol));
14 return (x);
15 }

Example: Consider F (x) = x2 − a, a > 0, which as
√

a as its root. From the function
we get F ′(x) = 2x. Using the Newton iteration leads to the famous square root iteration
formula.

x(k+1) = x(k) − (x(k))2 − a

2x(k) = 1
2(x(k) − a

x(k) )

Theorem Convergence of Newton’s Method in 1D: Newton’s method locally converges
quadratically to a zero x∗ of F , if F ′(x∗) ∕= 0.

Proof. A Lemma from above told us how to find a lower bound for the order of convergence
using φ and its derivatives. (We reasoned using the Taylor polynomial.) Here, we have φ′(x) =
1 − F ′(x)2−F (x)F ′′(x)

F ′(x)2 = F (x)F ′′(x)
F ′(x)2 . With F (x∗) = 0 and F ′(x∗) ∕= 0 we see that φ′(x∗) = 0.

From the mentioned Lemma follows directly that we must have at least order 2 convergence for
sufficiently close initial guesses.

Example:

• F (x) = xex − 1 with F ′(x) = ex(1 + x) has:

x(k+1) = x(k) − x(k)ex(k) −1
ex(k) (1+x(k))

= (x(k))2+e−x(k)

1+x(k)

• F (x) = x − e−x with F ′(x) = 1 + e−x has:

x(k+1) = x(k) − x(k)−e−x(k)

1+e−x(k) = 1+x(k)

1+ex(k) .

Observe that those two F have the same roots x∗ but their Newton iterations look very
different and may also behave very differently. This suggests that is may be worth to recast
some function into an equivalent F with the same roots that is easier to analyze.
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We may be given F in functional form but still need to compute F ′ ourselves. Generally,
we should apply our knowledge from Analysis to do so. Additionally, one should remember
implicit differentiation. Often, it is the only way to apply the Newton method.
With implicit differentiation one can find the derivative of a function that is not explicitly
solved for one variable in terms of another. It is particularly useful when dealing with
equations where it is difficult or impossible to solve for one variable in terms of the other.
In this process, you differentiate both sides of an equation with respect to a chosen variable,
treating other variables as functions of that variable, and then solve for the derivative of
the function of interest. This technique is widely used to find the derivatives of functions
defined implicitly.

Example: Consider F (x) = ω⊤(A + xI)−1b − 1. We identify u(x) = (A + xI)−1b
which we need to differentiate. We can write that as (A + xI)u(x) = b and apply the
product rule to get:

I · u(x) + (A + xI)u′(x) = 0 ⇒ u′(x) = −(A + xI)−1u(x)

When substituting u(x), we have an expression for u′(x).

Preconditioning of Newton’s Method In this paragraph we want to replace F (x) with some
other function G(x) so that G has approximately the same roots but offers a larger range of conver-
gence. We do so by defining g(x) = F̂ −1(F (x)) ≈ x with the assumption that some F̂ −1 ≈ F −1

is available. G then is G(x) := g(x) − F̂ −1(0) = 0 ⇔ F (x) = 0. G is an ”almost linear”
function. Thus, we expect a very large convergence range (global?) from the Newton method.
Furthermore, we can expect quadratic convergence.

Let’s compute the Newton iteration. For that we need to know G′(x) which we get as g′(x):

(F̂ −1)′(y) = 1
F̂ ′(F̂ −1(y))

⇒ g′(x) = 1
F̂ ′(g(x))

F ′(x)

=⇒ x(k+1) = x(k) − G(x(k))F̂ ′(g(x(k)))
F ′(x(k))

Example: Consider F (x) = 1
(x+1)2 + 1

(x+0.1)2 − 1 with x > 0. We approximate

F (x) ≈ F̂ (x) = 2
x2 − 1 ⇒ F̂ ′(y) = 1√

y+1 . With x(0) = 0 we then get nice convergence:

k x(k) F

x(k)


x(k) − x(k−1) x(k) − x∗

1 0.91312431341979 0.24747993091128 0.91312431341979 -0.13307818147469
2 1.04517022155323 0.00161402574513 0.13204590813344 -0.00103227334125
3 1.04620244004116 0.00000008565847 0.00103221848793 -0.00000005485332
4 1.04620249489448 0.00000000000000 0.00000005485332 -0.00000000000000

Multi-Point Methods Now, we want to create a more elaborate model of the function compared
to the simple linear approximation of the Newton method. We want to replace F with an inter-
polating polynomial. On the one hand, this allows us to use more points to create more accurate
approximations and, one the other hand, we don’t rely on the the derivative of the function F .
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Secant Method We model F by the linear function connecting (x(k−1), F (x(k−1))) and
(x(k), F (x(k))). The iteration becomes:

F̃ (x) = F (x(k)) + F (x(k)) − F (x(k−1))
x(k) − x(k−1) (x − x(k))

x(k+1) = x(k) −


F (x(k)) − F (x(k−1))
x(k) − x(k−1)

−1

F (x(k))

Figure 46: Secant Method

While we don’t need the derivative of F for this method, we now need two initial guesses. But
after those, we only need to do one evaluation of F per iterative step.

Listing 47: Secant Method in C++

1 template <typename Func>
2 double secant(double x0, double x1, Funct &&F, double rtol,

double atol, unsigned int maxit) {
3 double fo = F(x0);
4 for(unsigned int i = 0; i<maxit; ++i) {
5 double fn = F(x1);
6 double s = fn * (x1-x0) / (fn-fo);
7 x0 = x1;
8 x1 = x1 - s;
9 if (abs(s)<max(atol, rtol*min(abs(x0),abs(x1))))

10 return x1;
11 f0 = fn;
12 }
13 return x1;
14 }

It can be mathematically shown that this converges with order p ≈ 1.62. Fractional orders
of convergence are typical for two-point iterations. One can extend this approach to more-point
iterations by modeling a polynomial of higher degree with more points and more initial guesses.

Multi-point iterations (and especially the secant method) usually only converge locally!

Inverse Interpolation We assume that F : I ⊂ R → R is one-to-one, i.e., monotone. Thus:
F (x∗) = 0 ⇒ F −1(0) = x∗. We now interpolate F −1 by a polynomial p of degree m − 1
degermined by the points/interpolation conditions:

p(F (x(k−j))) = x(k−j), j = 0, . . . , m − 1
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The iteration then is given through evaluation of p at 0: x(k+1) := p(0). With m = 2 we just get
the secant method. But with m = 3 we get quadratic inverse interpolation. The iteration breaks
down if previous points agree as the root of the polynomial then can be arbitrary. For the case that
the polynomial is well-defiend:

x(k+1) = F 2
0 (F1x2 − F2x1) + F 2

1 (F2x0 − F0x2) + F 2
2 (F0x1 − F1x0)

F 2
0 (F1 − F2) + F 2

1 (F2 − F0) + F 2
2 (F0 − F1)

with:

F0 := F

x(k−2)


, F1 := F


x(k−1)


, F2 := F


x(k)


, x0 := x(k−2), x1 := x(k−1), x2 := x(k)

The 3-point iteration also converges with a fractional order, but with ≈ 1.8 it is slightly higher
than for the secant method.

Example: F (x) = xex − 1 with initial guesses x(0) = 0, x(1) = 2.5, x(2) = 5.

k x(k) F

x(k)


e(k) := x(k) − x∗ log|e(k+1)|−log|e(k)|

log|e(k)|−log|e(k−1)|
3 0.0852039005817 -0.90721814294134 -0.48193938982803
4 0.1600925262258 -0.81211229637354 -0.40705076418392 3.3379115437883
5 0.7987938181639 0.77560534067946 0.23165052775411 2.2874048891220
6 0.6309463675284 0.18579323999999 0.06380307711864 1.8249466728971
7 0.5610775099102 -0.01667806436181 -0.00606578049951 1.8732326421421
8 0.5670694103310 -0.00020413476766 -0.00007388007872 1.7983293698045
9 0.5671433170709 0.00000007367067 0.00000002666114 1.8484126152709
10 0.5671432904098 0.00000000000003 0.00000000000001

Figure 47: Numerical Experiment for 3-Point Method

7.3.3 Asymptotic Efficiency

We have discussed different iterative method to solve (one-dimensional) NLSEs. But so far we
did not yet formally compare them. We only looked at numerical experiments and orders of con-
vergence. But for a proper comparison we must consider not only the order of convergence but
also the computational cost of each iterative step.

We say that a method is efficient if the fraction gain
work is high. As a measure of gain we will use

ρ. It measure the relative reduction of the error by a factor of ρ: |e(k)| ≤ ρ|e(0)| with 0 < ρ < 1.
| log ρ| then corresponds to the number of digits gained.

As a measure for work we will use W · k(ρ). W is the work/computational effort per step as
the number of evaluation of F and and its derivatives in that step. k(ρ) is the number of iteration
steps required to reduce the relative error by a factor of ρ.

efficiency := #digits gained
total work required

= | log ρ|
k(ρ) · W
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We now compute k(ρ) for order p convergence.
e(k)

 ≤ C
e(k−1)


p

≤ C1+p
e(k−2)


p2

≤ C1+p+p2
e(k−3)


p3

≤ · · ·

≤ C1+p2+p3+···+pk−1
e(0)


pk

= C
pk−1
p−1

e(0)

pk−1 e(0)



=



 C
1

p−1
e(0)


  

assume |e(0)| so small so that <1





pk−1

e(0)
 , k ∈ N

=⇒ |e(k)| ≤ ρ|e(0)| if

C

1
1−p |e(0)|

pk−1
≤ ρ

⇒ (pk − 1) log(C
1

1−p |e(0)|) ≤ log ρ

⇒ pk − 1 ≥ log ρ

log L0
with L0 := C

1
1−p |e(0)| < 1

⇒ pk ≥ 1 + log ρ

log L0

⇒ k ≥
log(1 + log ρ

log L0
)

log p
= logp(1 + log ρ

log L0
)

Asymptotic Perspective For very small ρ: ρ ≪ 1 ⇒ log ρ < 0, log L0 < 0, | log ρ| ≫ 1 and
get an approximation by the simplification log | log ρ|

log p .

efficiency =






| log ρ|
k(ρ)·W = log C

log ρ
| log ρ|

W = − log C
W , p = 1

| log ρ|
k(ρ)·W = log p

W
| log ρ|

log | log ρ| , p > 1

For p > 1, only the factor log p
W is specific to one iterative method and relevant for the asymp-

totic analysis.

Newton Method vs. Secant Method

• WNewton = 1 · F -evaluation + ·F ′-evluation

pNewton = 2

• Wsecant = 1 · F -evaluation

psecant = 1.62

log pNewton
WNewton

log psecant

Wsecant

≈ 0.71

We see that the secant method has higher efficiency. This means that the reduced work per
iteration step pays off although the convergence order is lower.

7.4 Newtons Method for Rn

We have been introduced to the Newton method in 1D already. Now we generalize to arbitrarily
many dimensions. The goal is to find x∗ ∈ D ⊂ Rn where F (x∗) = 0 and F is some function
F : D → Rn. For the Newton method to be applicable, F must be continuously differentiable.
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7.4.1 Multi-Dimensional Differentiaton

Before we actually get started we will discuss multi-dimensional differentation. This is a prereq-
uisite for this section, because the Newton method in multiple dimensions relies on the Jacobian -
the equivalent of the differential in multiple dimensions. This has mostly been discussed at some
point in Analysis 2.

Derivatives Derivation can be understood as local linearization. F (x+h) = F (x)+DF (x)h+
O(h2), which is a good approximation for small h/h → 0. DF (x) is a linear mapping Rn →
Rn. The following definition of the derivative/Jacobian and Hessian are different from Analysis
2. But they boil down to the same concepts. So understanding the (properly explained) definition
from Analysis 2 should suffice.

Definition Multi-Dimensional Derivatives: Let V, W be finite dimensional vector spaces
and F : D ⊂ V → W a sufficiently smooth mapping. The derivative (differential) DF (x)
of F in x ∈ V is the unique linear mapping DF (x) : V → W such that there is δ > 0 and
a function  : [0, δ] → R+ satisfying limγ→0 (γ) = 0 such that

F (x + h) − F (x) − DF (x)h = (h), ∀h ∈ V, h < δ (1)

Definition Gradient and Hessian: For sufficiently smooth F : D ⊂ Rn the gradient
gradF : D → Rn, and the Hessian (matrix) HF (x) : D → Rn,n are defined as

grad F (x)⊤h := DF (x)h (2)

h⊤
1 HF (x)h2 := D(DF (x)(h1))(h2), ∀h, h1, h2 ∈ Rn (3)

High-Level Differentiation Rules If F : V → W is a linear map, we just have DF = F !

Chain rule For F : V → W, G : U → V sufficiently smooth

D(F ◦ G)(x)h = DF (G(x))(DG(x)h), h ∈ V, x ∈ D

Product Rule The generalization of the product in 1D are bilinear combinations b : W ×
U → Z, i.e., mappings that are linear in each argument. Meaning, they are linear on each argument
as usual when the other argument is held fixed.

T (x) := b(F (x), G(x)) ⇒ DT (x)h = b(DF (x)h, G(x)) + b(F (x), DG(x)h)

T (x + h) = b(F (x + h), G(x + h))
= b(F (x) + DF (x)h + o(h), G(x) + DG(x) + o(h))

(∗)= b(F (x), G(x)) + b(DF (x)h, G(x)) + b(F (x), DG(x)h)
  

DT (x)h

+o(h)
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Example: Derivative of a Bilinear Form/Product Rule
ψ : Rn → R, ψ(x) := x⊤Ax, A ∈ Rn,n. We use the product rule with F, G : id : Rn →
Rn and b(x, y) = x⊤Ax.

Dψ(x)h = h⊤Ax + x⊤Ah = (x⊤A⊤ + x⊤A)h
⇒ grad ψ(x) = (A⊤ + A)x ∈ Rn

Example: Derivative of Euclidean Norm
We can compute the Euclidean norm manually by computing partial derivatives. But that
is very cumbersome. Instead, we can also write the Euclidean norm F : Rn\{0} → R,
F (x) = x2 =

n
i=1 x2

i by splitting it: F = G ◦ H, G(ζ) :=
√

ζ, H(x) = x⊤x. Those
components have the derivatives H(x) = x⊤x and DH(x)h = 2x⊤h.

DF (x)h = DG(H(x))DH(x)h

= 1
2
√

x⊤x
2x⊤h

7.4.2 The Newton Iteration

Just as in one dimension we approximate our function with a linear function and the compute the
root of that approximation as the next iterate. With what is known from Analysis we get the model
function F̃ :

F̃ (x) := F (x(k)) + DF (x(k))(x − x(k))

In 1D we required that the differential is ∕= 0. Here we require that det DF ∕= 0, i.e., that the
Jacobian DF is invertible. This is required so that we have a unique root of the approximation.
Then:

F̃ (x(k+1)) = 0 : x(k+1) = x(k) − DF (x(k))−1F (x(k))

S := −DF (x(k))−1F (x(k)) is called the Newton correction. Notice that in practice we clearly
don’t compute the inverse of the Jacobian but instead solve the n×n LSE DF (x(k))S = −F (x(k)).

Listing 48: Newton Method in C++

1 template <typename FuncType, typename JacType, typename VecType>
2 VecType newton(
3 FuncType &&F,
4 JacType &&DFinv,
5 VecType x,
6 const double rtol,
7 const doulbe atol
8 ) {
9 VecType s(x.size());

10 do {
11 s = DFinv(x,F(x));
12 x -= s;
13 } while((s.norm() > rtol * x.norm()) && (s.norm() > atol));
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14 return x;
15 }

Affine Invariance of the Newton Method Consider some function F . Looking for a zero of F
is equivalent to seeking a zero of GA, i.e., GA(x) = 0 where GA(x) = A · F (x) and A ∈ Rn,n is
regular, because only every root of F (x) is a root of GA as DGA(x) = A · DF (x).

x(k+1) = x(k) − [A · DF (x(k))]−1AF (x(k))
= x(k) − DF (x(k))−1A−1AF (x(k))

= x(k) − DF (x(k))F (x(k))

Affine invariance is important, because also the stopping criteria are then affine invariant.

A ”Quasi-Linear” System of Equations We consider A(x) · x = b with b ∈ Rn, A : Rn → Rn

continuously differentiable. If A would just be some matrix, this would be a LSE. But as A
depends on the solution x, this is a NLSE. With F (x) := b − A(x)x this is equivalent to solving
F (x) = 0. To apply the Newton method, we must know DF (x), which we determine via the
product rule.

DF (x)h = (DA(x)h)x + A(x)h

To solve the Newton method we need to solve this for s.

DF (x(k))s = −F (x(k))
⇒ (DA(x(k))s)x(k) + A(x(k))s = A(x(k))x(k) − b

A Special Quasi-Linear System of Equations We consider A(x)x = b with

A(x) :=





γ(x) 1
1 γ(x) 1

1 γ(x) 1
. . . . . . . . .

. . . . . . . . .
1 γ(x) 1

1 γ(x) 1





∈ Rn×n

γ(x) = 3 + x2

=⇒ A(x)x = Tx + xx2, T :=





3 1
1 3 1

. . . 3 . . .
. . . . . . . . .

1 3 1
1 3
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From F (x) = Tx + xx2 − b we can compute DF (x)h.

DF (x)h = D{x → Tx}(x)h + D{x → x · x2}(x)h

= Th + h · x2 + x
x⊤

x2
h

= (A(x) + xx⊤

x2
)h

Now we can compute the Newton correction using DF (x)h:


A(x(k)) + x(k)(x(k))⊤

x(k)2



s = b − A(x(k))x(k)

The system matrix is a rank-1 modification of A(x(k)), which we have seen in the section
on LSEs to be solvable in O(n) with the Sherman-Morrison-Woodbury Formula as A(x(k)) is a
triadiagonal matrix and itself easy to solve.

Matrix Inversion by Means of Newton Method We construct a special F : Rn,n → Rn,n so

that the root of F corresponds to the inverse of A ∈ Rn,n. Let


F : Rn,n

∗ → Rn,n

F (X) := A − X−1 , with Rn,n
∗

being the invergible n×n matrices. As the derivative of F we have DF (x)H = X−1HX−1, X ∈
Rn,n

∗ . See the next subparagraph to understand deriving matrix inversion.

x(k+1) = x(k) − s, s := DF (x(k))−1F (x(k))
⇒ DF (x(k))s = (x(k))−1s(x(k))−1 = F (x(k)) = A − (x(k))−1

⇒ s = x(k)(A − (x(k))−1)x(k) = x(k)Ax(k) − x(k)

⇒ x(k+1) = x(k) − (x(k)Ax(k) − x(k)) = x(k)(2I − Ax(k))

Derivative of Matrix Inversion Before we used the derivative of the matrix inversion oper-
ator as part of our computation. Now we show how to get the derivative of matrix inversion, i.e.,

the derivative of inv :

Rn,n

∗ → Rn,n

X → X−1 . Here we use a technique introduced earlier: implicit

differentiation. We differentiate the expression XX−1 = I on both sides and then extract the
derivative of matrix inversion.

D(X · inv(X)) = DI

⇒ H · inv(X) + X · Dinv(X)H = 0

=⇒ Dinv(X)H = −X−1HX−1

Simplified Newton Method This approach trades speed of convergence for less work per inter-
ation step. We do so using this iteration:

x(k+1) = x(k) − DF (x(0))−1F (x(k)), k ∈ N

This always considers the same DF (x(0))−1 instead of DF (x(k))−1. This allows us to reuse
the same LU-Decomposition for solving the LSE to get the Newton correction. Hence, the LSE
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can be solved in O(n2) instead of O(n3) as we only need to do the elimination but not the factor-
ization. However, the approximation is also worse. Hence, the speed of convergence is lower.

Listing 49: Simplified Newton Method

1 template <typename Func, typename Jac, typename Vec>
2 void simpnewton(Vec& x, Func F, Jac DF, double rtol, double atol

) {
3 auto lu = DF(x).lu();
4 Vec s;
5 double ns, nx;
6 do {
7 s = lu.solve(F(x));
8 x -= s;
9 ns = s.norm(); nx = x.norm();

10 } while((ns > rtol*nx) && (ns > atol));
11 }

7.4.3 Convergence of Newton’s Method

We justify that the Newton method converges locally quadratic.
The Newton iteration is the fixed point iteration x(k+1) = Φ(x(k)), Φ(x) = x−DF (x)−1F (x)

as introduced above. Through some transformations based on the Taylor approximation of the
error x(k+1) − x∗ we see that it is quadratic in the previous error x(k) − x∗.

x(k+1) − x∗ = Φ(x(k)) − Φ(x∗)
= DΦ(x∗)(x(k) − x∗) + O(x(k) − x∗2)

= O(x(k) − x∗2) for x(k) close to x∗

It remains to show why DΦ(x∗)(x(k) − x∗) = 0 for x(k) close to x∗.

DΦ(x)h = h −

D{x → DF (x)−1}(x)h · F (x) + DF (x)−1DF (x)h



= h − D{x → DF (x)−1}(x)h · F (x) − h

= −D{x → DF (x)−1}(x)h · F (x)

DΦ(x∗)h = −D{x → DF (x)−1}(x)h · F (x)
= −D{. . . }(x)h · 0 = 0

Local quadratic convergence only holds when the initial guess is sufficiently close to the target
value. Unfortunately, it is very difficult to say a priori how close is close enough.

When only looking at one dimension, this is a special case of a more general theorem
considered for the 1D case.
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Example: As an example for the convergence of the Newton method we will again look
at matrix inversion. We have already derived the Newton iteration as x(k+1) = x(k) −
x(k)(x(k)Ax(k) − x(k)) = x(k)(2I − Ax(k)). The error of this iteration is given by e(k) =
x(k) − A−1.

e(k+1) = x(k+1) − A−1

= x(k)(2I − Ax(k)) − A−1

= (e(k) + A−1)(2I − A(e(k) + A−1)) − A−1

= (e(k) + A−1)(I − Ae(k)) − A−1 = −e(k)Ae(k)

For the Euclidean matrix norm we have submultiplicativity: AB ≤ A · B. Then:
e(k+1) ≤ e(k)2A. This exhibits local quadratic convergence.
In this special case we can even give a bound for when we have local convergence. Specif-
ically, the error converges to 0 if e(0)A = x(0)A − I < 1.

7.4.4 Termination of Newton Iteration

x(k+1) − x∗ ≪ x(k) − x∗ ⇒ x(k) − x∗ ≈ x(k) − x(k+1) explains why the difference
between different iterations, i.e., the correction is a good indicator for the error. With ∆x(k) we
denote the absolute correction between x(k) and x(k+1). When working with ∆x(k) we may stop
based on an absolute or relative tolerance: ∆x(k) ≤ τrelx(k) or ∆x(k) ≤ τabs.

One shall remember that the Newton method converges very fast (locally quadratic if it con-
verges). Thus, we often only need a few iteration steps to reach a sufficient solution. If x(k) is
sufficient, just computing one more iteration, i.e., x(k+1), corresponds to a significant higher (rela-
tive) cost. Each iteration of the Newton method takes O(n3) due to the LSE solve. Thus, we want
to avoid computing any unnecessary step. This is a problem, because to consider ∆x(k) for the ter-
mination criteria, we must compute x(k+1). But computing that comes at a high cost considering
that we arent’t actually interested in the value if our current solution is already sufficient.

The idea to avoid the costly operation of computing x(k+1) is to compute an approximation
by replacing DF (x(k)) with DF (x(k−1)). This allows us to reuse the LU-Decomposition already
computed for DF (x(k−1)) and the solve can be done in O(n2).

Listing 50: Simplified/Economical Newton Correction based Newton Method

1 template <typename FuncType, typename JacType, typename VecType>
2 void newton_src(const FuncType &F, const JacType &DF, VecType &x

, double rtol, double atol) {
3 using scalar_t = typename VecType::Scalar;
4 scalar_t sn;
5 do {
6 auto jacfac = DF(x).lu();
7 x -= jafac.solve(F(x));
8 sn = jacfac.solve(F(x)).norm();
9 } while ((sn>rtol*x.norm()) && (sn>atol));

10 }

∆x̃ (the approximation of ∆x through the approximation of x(k+1)) is affine invariant. It does
not change when replacing F with AF where A is some regular matrix.
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7.4.5 Damped Newton Method

Remember that the Newton iteration converges locally quadratic. But unfortunately, our initial
guess has to be quite close to the result so that we are guaranteed convergence. With the damped
newton method we intend to address this challenge of rather limited convergence range. The goal
is to enlarge the domain of convergence.

We look at some examples to understand why the Newton Method may fail. The observations
lead to introducing damping afterwards.

Example: F (x) = xex − 1. Notice that F ′(−1) = 0.

• x(0) < −1 ⇒ x(k) → −∞ (as we have Newton correction in the wrong direction)

• x(0) > −1 ⇒ x(k) → x∗

This issue cannot be corrected for as it is caused by the core idea of the Newton correction.

Figure 48: Newton Method Diverging due to ’wrong’ Derivative

Example: F (x) = arctan(ax), a > 0, x ∈ R has x∗ = 0.
Here, we observe overshooting. This can be best understood by looking at the graph.

Figure 49: Newton Method Diverging due to Overshooting

The problem of overshooting can be fixed. We can trade speed of convergence for an increased
range of convergence. We add a damping factor λ(k)0 ∈]0, 1] to the iteration. Choosing the
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damping factor is non-trivial, because functions behave very differently.

x(k+1) := x(k) − λ(k)DF (x(k))−1F (x(k))

The following is a heuristic. There is no guarantee that this works. To understand the different
components of this, consider the explanation afterwards.

Definition Affine Invariant Damping Strategy: We choose the damping factor based on
the affine invariant natural monotonicity test (NMT). Specifically, we choose λ(k) maximal
from 0 < λ(k) ≤ 1 such that the following inequality still holds.

∆x(λ(k))2 ≤ (1 − λ(k)

2 )∆x(k)2

• ∆x(k) := DF (x(k))−1F (x(k)) is the current Newton correction

• ∆x(λ(k)) := DF (x(k))−1F (x(k) − λ(k)∆x(k)) is the simplified Newton correction

x(k) − λ(k)∆x(k) is the tentative next iterate

∆x(k) is the Newton correction from the current x(k) to x(k+1). ∆x(λ(k)) approximates the
Newton correction from x(k+1) to x(k+2). The precise Newton correction for that step would be
DF (x(k+1))−1F (x(k+1)) = DF (x(k+1))−1F (x(k) − ∆x(k)). Thus, the approximation differs
in that (a) we use the simplified Newton correction with DF (x(k))−1 instead of DF (x(k+1))−1,
which we do to avoid having to compute DF (x(k+1))−1, and (b) add the damping factor λ(k).

The inequality then tests whether the Newton correction decreases in size. Wanting to choose
the maximum λ(k) corresponds to wanting to avoid damping. But we only avoid damping if it
allows us to shrink the Newton correction. Otherwise we introduce damping to such an extend that
we still shrink the Newton correction reasonably, which is expressed through the factor (1 − λ(k)

2 ).
For sufficiently close x(k), quadratic convergence clearly allows us to choose λ(k) = 1 as

∆x(λ(k))2 = ∆x(k+1)2 ≤ 1
2∆x(k)2 = (1 − λ(k)

2 )∆x(k)2. This means we require no
damping for quadratic convergence. But if The inequality doesn’t hold, we introduce the damping
factor by decreasing λ(k).

• NMT fails: λ(k) → λ(k)

2 & retry

• NMT passed: do the update according to damping formula, increment k → k + 1, and use
less damping initially in the next step with λ → 2λ.

Listing 51: Damped Newton Method

1 template <typename FuncType, typename JacType, typename VecType>
2 void dampnewton(const FuncType &F, const JacType &DF, VecType &x

, double rtol, double atol) {
3 using index_t = typename VecType::Index;
4 using scalar_t = typename VecType::Scalar;
5 const index_t n = x.size(); // number of unknowns
6 const scalar_t lmin = 1E-3; // minimal damping factor
7 scalar_t lambda = 1.0; // initial and actual damping factor
8 VecType s(n), st(n); // newton corrections
9 VecType xn(n); // tentative new iterate

10 scalar_t sn, stn; // norms of newton corrections
11
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12 do {
13 auto jacfac = DF(x).lu(); // LU-factorize Jacobian
14 s = jacfac.solve(F(x)); // newton correction
15 sn = s.norm(); // norm of newton correction
16 lambda *= 2.0;
17 do {
18 lambda /= 2; // reduce damping factor
19 if (lambda < lmin) throw "No convergence: lambda -> 0";
20 xn = x-lambda*s; // tentative next iterate
21 st = jacfac.solve(F(xn)); // simplified newton correction
22 stn = st.norm();
23 } while(stn > (1-lambda/2)*sn); // natural monotonicity test
24 x = xn; // xn accepted as new iterate
25 lambda = std::min(2.0*lambda, 1.0); // try to mitigate

damping
26 } while((stn>rtol*x.norm()) && (stn>atol));
27 }

Notice that this entire heuristic is affine invariant (as its name already suggests). This can be
easily seen as ∆x(k) and ∆x(λ(k)) are not affected by replacing F with AF , A being an invertible
matrix.

Example: F (x) = arctan(x) was already considered in the beginning to motivate damp-
ing. Now we will see that applying the Heuristic actually increases the range of conver-
gence. We consider x(0) = 20 (a point that is rather far away from the target x∗ = 0) and
a lower bound for damping of 0.001.

k λ(k) x(k) F

x(k)



1 0.03125 0.94199967624205 0.75554074974604
2 0.06250 0.85287592931991 0.70616132170387
3 0.12500 0.70039827977515 0.61099321623952
4 0.25000 0.47271811131169 0.44158487422833
5 0.50000 0.20258686348037 0.19988168667351
6 1.00000 -0.00549825489514 -0.00549819949059
7 1.00000 0.00000011081045 0.00000011081045
8 1.00000 -0.00000000000001 -0.00000000000001

Figure 50: Dampted Newton Method on arctan

We see that initially, the damping factor is very small to accommodate for much over-
shooting. But within several iterations, we are sufficiently close to the target so that the
algorithm goes back to quadratic convergence.

But with F (x) = xex −1 and x(0) = −1.5, this wouldn’t work. The damping factor would
continue to go down until we reach the minimum. Then, one could terminate/bail out.

7.5 Quasi-Newton Methods

One drawback of the Newton method is that it requires the derivative of the function F . In many
applications that may not be available. Thus, we now consider derivative-free variations of the
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Newton method.
For one dimension we already discussed the secant method, where we replace the derivative

with an approximation based on the last two iterates to interpolate a line.

x(k+1) = x(k) − x(k) − x(k−1)

F (x(k)) − F (x(k−1))
F (x(k))

For higher dimensions n > 1 we generalize by replacing DF (x(k)) with an approximation of
the Jacobian Jk ∈ Rn,n. One basic idea for this is to approximate all partial derivatives of F by
means of difference quotient. But that is computationally extremely expensive, because computing
n2 difference quotients requires many evaluations of F .

Now, we specify two conditions for Jk. First, the secant condition so that Jk ≈ DF (x(k)).

Jk(x(k) − x(k−1)) = F (x(k)) − F (x(k−1))

This leads to the iteration x(k+1) = x(k)−J−1
k F (x(k)). But the secant condition does not uniquely

determine Jk, because we only specify its incline in one direction. But in a multi-dimensional
space also all other directions must be considered. The idea for the remaining dimensions is to
reuse Jk−1. Broyden’s condition requires that Jk and Jk−1 are identical in all directions not
covered by the secant condition.

Jkz = Jk−1z, ∀z : z ⊥ (x(k) − x(k−1))

Broyden’s condition and the secant condition together uniquely determine Jk.

Definition Broyden’s Quasi-Newton Method:

x(k+1) := x(k) + ∆x(k), ∆x(k) := −J−1
k F (x(k))

Jk+1 := Jk + F (x(k+1))(∆x(k))⊤

∆x(k)2
2

That this satisfies the conditions specified earlier can be seen when multiplying with ∆x(k) or
with a vector defined to be orthogonal. In the former case, Jk∆x(k) = −F (x(k)) and the right
fraction becomes F (x(k+1)). In the latter case, the right fraction becomes zero as the dot product
between ∆x(k) and a vector orthogonal to it is zero.

Notice that we require an initial guess for J0. If we can compute the Jacobian, we can take
J0 := DF (x(0)).

Convergence of Broyden’s Method We only considered anecdotal evidence. The concluson is
that th ’pure’ Newton method converges locally quadratically. Broyen’s method also converegs
nicely but not quite quadratic. But it performs still noticeably better than the simplified Newton
method.

Implementation of Boryden’s Method In this paragraph we consider a smart way to actually
compute Jk. The idea relies on the observation that according to the above definition Jk+1 is
a rank-1 modification of Jk. In the section on solving LSEs, we discussed the special case of
updating the solution of a LSE given a rank-1 modification of the system matrix. We will apply
that here.
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The Sherman-Morrison-Woodburry formula was used to update the solutoins given some low-
rank modification. For a rank-1 modification the formula is:

(A + uv⊤)−1 =


I − A−1uv⊤

1 + v⊤A−1u



A−1, assuming 1 + v⊤A−1u ∕= 0

When choosing u := F (x(k+1)) and v := ∆x(k)

∆x(k)2
2

we get an update formula for J−1
k :

J−1
k+1 =



I − J−1
k F (x(k+1))(∆x(k))⊤

∆x(k)2
2 + ∆x(k) · J−1

k F (x(k+1))



J−1
k =



I − ∆x(k+1)(∆x(k))⊤

∆x(k)2
2 + ∆x(k) · ∆x(k+1)



J−1
k

where ∆x(k+1) := J−1
k F (x(k+1)) is called the simplified quasi-newton correction. This vector is

very helpful for simplified termination and damping. Thus, computing it is not wasteful.
In an algorithmic implementation we of course have to check that we never divide by zero.

For that we test whether |(∆x(k))⊤∆x(k+1)| < 1. This can be expected, because those vectors
should be rather small in the asymptotic phase if the method converges nicely.

For the k-th update of our iteration we get:

∆x(k) = −J−1
k F (x(k)) = −

k−1

l=0



I + ∆x(l+1)(∆x(l))⊤

1 + (∆x(l))⊤∆x(l+1)



· J−1
0 F (x(k))

But clearly we don’t always perform k matrix multiplications. Instead, we only take the previous
correction and multiply one rank-1 matrix to get the next correction. With ∆x(k) := −tk:

tl+1 := tl + ∆x(l+1) (∆x(l))⊤tl

1 + (∆x(l))⊤∆x(l+1) , l = 0, ..., k − 1

For the entire algorithm we first compute the LU-Decomposition of J0 so that we can com-
pute J−1

0 F (x(k)) for all k in O(n2) after this initial O(n3) investion. Then, we must do the above
iteration for each k up to our ’target k’, because we always have a different initial F (x(k)). For
each iteration, we do two triangular solves to get t0 in O(n2). Afterwards, each recursive step is
done in O(n). So for k steps we have O(kn). For N steps, i.e., different k values, in total, we get
O(n3 + Nn2 + N2n).

The quality of the result can be adversely affected by roundoff due to the use of the Sherman-
Morrison-Woodbury formula. Thus, this algorithm may not be very stable. One could use updates
with QR instead of LU . That would increase complexity and cost.
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