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1 Introduction

Systems Programming describes programming on and above the hw/sw boundary. With systems,
one always has to balance between theory and engineering (practical use). Specifically, we con-
sider programs in the context of the real-world. While much of CS assumes many abstractions
(data types, algorithms as mathematical objects, performance as asymptotic analysis, ...) systems
recognizes the limitations of this as those abstractions do not really match reality, which can lead
to bugs etc. when not having the proper knowledge. Systems Programmer understand the underly-
ing reality to enable optimizations by recognizing that programs are more than just the algorithmic
ideas.

Among the specialties which we will discuss in the following are:

• Computers don’t really deal with numbers. Integers have an upper and lower bound. And
floating point numbers are discrete.

• Understanding and writing (limited) assembly is important to fully grasp performance be-
havior and enable special functionality not accessible through a programming language.

• Memory is not a nice array that just stores data. It is finite. It must be managed (allocated &
freed). There are caches, prefetching, virtual memory, ... Those all are deviations from the
ideal simplified understanding. Performance depends on those factors. Adapting a program
to the given environment can yield great improvements.

• Performance is about much more than asymptotic complexity. We must consider different
latencies of different instructions, vector instructions, loop orders, ... Despite having the
same asymptotic complexity, such simple changes may increase program performance by
160x.

• Computers don’t just execute programs. They are a very complex and intricate piece of
machinery. There is the Operating System, external devices (I/O), concurrent operations,
different platforms, ... The generic programmer only knows a small fraction of the whole
system. But knowing the entire systems structure enables a great systems programmer to
unlock additional performance.

• Programs are not semantic specifications. Much behavior is implementation defined and
we rely on the compiler to map operations in the program to the most natural operations in
hardware.

Another reason for the relevance of Systems Programming is that Moore’s Law does not con-
tinue to imply an increase in single-core performance as it has done in the past. To combat this
decline, more specialized compute units (GPUs, TPUs, NPUs, ...) are developed. Programming
those is a systems software problem.
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2 Introduction to C

This course discusses C on a practical level. There won’t be a formal introduction or formal defi-
nitions. Instead, we see the different properties of C introduced through example and applications.

2.1 History

C is an old language. It was developed quickly by Dennis Ritchie with the purpose to reimple-
ment the Unix kernel in C instead of Assembly as it had been done before. At that time, C was
considered a high-level language. Many characteristics of (even modern) C can be traced back to
the properties of architecture used at the time of the inception of C.

The C language was influenced by other earlier languages, which preceded C: CPL (Combined
Programming Language), BCPL (Basic Combined Programming Language), and B. CPL was so
complex that nobody ever managed to implement a compiler for it.

By its design, C was portable across many architectures. Accordingly, there were numerous
debates on the C standard. As C was and is used on many different platforms, it is often diffi-
cult to agree on a shared definition for a standard. Hence, many features of C are stated to be
implementation-defined. Chronologically, those are the relevant C standards:

• K&R C (the standard was not defined in plain English, instead the compiler was the stan-
dard)

• ANSI C

• C99 (from 1999, will be used in this course)

• C11

• C17

• C23 (?) to be released in 2024

2.2 Characteristics of C

Compared to other languages, C is very fast. The reason that C is so fast is that (a) it is close to the
hardware and writing C code is hence very optimized for the used hardware, and (b) C compilers
are very, very sophisticated. It is almost impossible to write as good assembly code manually.

For the above reasons (speed and hardware closeness) C is the language of choice for OS
developers, embedded systems, speed-critical applications, security exploits, ... despite its age.
Moreover, C is a very simple language by itself. Simple not meaning it is simple to write good C
code, but that the count of language constructs is rather small. There are no objects, classes, traits,
features, methods, interfaces, ... We only really have functions, variables, and pointers. There
are also no fancy build-in types. We mostly deal with what the hardware provides. Boolean are
just integers with an easier to read name, for example. Exceptions do also not exist. Neverthe-
less, objects, polymorphism etc. can still be used in C because those concepts can of course be
implemented.

Because C is so close to the hardware, writing C programs is about caring about data organi-
zation. C is about directly building and manipulation structures in main memory. In C, one must
manually manage the memory. That unlocks great potential for optimization. We mostly store
things on the stack. When we want to use the heap, we need to manually allocate memory and
free it after we have used it as there is no garbage collection. Pointers (weakly types) enable us to
directly access memory addresses.
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While those concepts are different from Java, JavaScript, C++, and other languages, the syntax
is fairly similar. Comments, identifiers, blocks,. . . ., they all work basically the same. Still, as C
has less language constructs, the list of reserved words is different. Also, there is a powerful
macro pre-processor, which is used for string and file substitution, conditional compilation, etc.
Such pre-processors are not present in other relevant languages.

2.3 C Program Structure

Listing 1: Simple C Program

1 int main() {
2 return 0;
3 }

Without relying on default type definitions etc., one will struggle to write a shorter C program.
But for illustratory purposes we will consider a slightly more elaborate program.

Listing 2: Basic C Program

1 #include <stdio.h>
2

3 int main(int arc, char *argv[])
4 {
5 printf("hello, world\n");
6 return 0;
7 }

• The #include<...> can be understood as an import. The # indicates a pre-processor
instruction. What is actually done is that the contents of the specified file, here the stdio.h
header file, is pasted to replace the include during compilation.

• The main() function is the entry point of the program. Its arguments are the command line
arguments. argc specifies the number of arguments and *argv[] is an array of strings.

• printf() is a generic function for printing formatted strings. The \n is required to add a
line break. This function can only be used when importing stdio.h.

In C, the program always returns an integer. By convention, 0 tells the operating system that the
program terminated successfully. Anything else indicates some sort of error. One can use different
integers for different errors. But notice that also returning void will likely compile correctly due
to compiler defaults.

2.4 Toolchain/Workflow

If the reader is familiar with languages such as Python, one probably knows that it is an inter-
preted language. During execution the program is interpreted and executed at runtime. C (and
other languages such as C++) are different. Those are compiled languages. Before execution, C is
compiled into assembly, which can then directly be executed. This removes a runtime performance
overhead.

Compilation is done in different steps. In the early times of C, the linking as part of loading
did not exist. But today, the assembly being executed is different from the binary assembly on
disk. Dynamic linking (linking during load) is discussed in the section on linking.
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Figure 1: C Workflow

1. Editing the raw .c files.

2. Pre-processing as part of compilation with cpp generates new .c files.

3. The pre-processed .c files are compiled into assembly using cc1. The assembly is still
stored in human-readable form in .s files. This finishes the compilation step.

4. The .s files are then assembled into .o object files. This now corresponds to assembly as
defiend by the ISA and is not human friendly to read. This is done with the as tool.

5. Various object files and statically linked libraries are then linked to create an executable
using ld. Executables often have the ending .a.

6. During execution, the loader loads an executable and finishes to link dynamically linked
libraries.

The different steps of this pipeline could be done manually. But in practice, we use gcc,
which combines all the above steps into a single tool. Gcc stands for GNU Compiler Collection.
With different flags, one can instruct gcc to only perform some of the steps outlined above.

• gcc -S: Up to including step 3. Results in human-readable assembly.

• gcc -c: Up to including step 4. Results in non-human-readable machine code.

• gcc: Up to including step 5. This creates the executable. With -o once can specify the
name of the output file. On Unix/Linux it is a.out by default.

2.5 Control Flow

if, switch, for, while, do-while, return, ... all have basically the same semantics and
syntax as in Java or C++. Hence, we will not elaborate them here. Notice that for switch we
need a break; in each case if we would rather not fall through and continue executing the next
case. We also have break and continue. But there are no labels, so we can always only affect
the innermost loop.

Also, we have goto, which we can use to jump to a specific label, i.e., point in the code. This
is a remnant from early programming. It should only be used in a few specific cases. Using goto
almost never increases program performance and it is very confusing to understand programs

using C.
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2.6 Functions

Functions work mostly as in Java/C++. We won’t explain them explicit.y

Listing 3: Functions in C

1 returnType fucntionName(parameterType parameterName, /* ... */ )
2 {
3 // ...
4 return returnType;
5 }

2.7 Basic I/O

Using I/O to interact with devices is complicated. It will be discussed in the last section. But more
basic I/O is printing to the console and reading input from the console. To print to the console we
use printf(); which may only be used when importing stdio.h. It is a variadic function,
meaning it accepts a variable number of arguments.

The first argument is the format string. The remaining arguments are arbitrary but must fit the
what we indicated to insert into the format string. Inside the format string, we use %d to insert
a decimal, %s to insert a string, ... The following arguments then specify those values in the
corresponding order.

2.8 Basic Types

Variable declaration works as known: type name;. Together with initialization: type name
= value;. Furthermore, we may add additional keywords such as static or volatile.

The latter is discussed as part of multiprocessing.

inside a block/function outside a block/function
static value persists between calls scope limited to compilation unit

non-static scope is just the block scope is the entire program

Figure 2

The compilation unit is what is being compiled after the pre-processing. I.e., the unit that is
actually being compiled and not all files that are separately compiled but only combined during
linking.

Besides basic types as int, float, double, char, ..., we also have void. It has no value
and is used for untyped pointers (void *) or declaring functions with no return value. char can
be signed or unsigned. It is basically a byte of memory. float is always signed. Integer types
can be signed or unsigned.

We usually distinguish between integers and floating point types. Chars and booleans are
also just integers under the hood. Thus, we can all discuss them as being the same. They only
correspond to different sizes/amounts of bits in memory. Integers are stored in 2s complement
format. Floating point types will be discussed in a separate section.

Booleans are integers as they are an integer-type. In basic C there even isn’t a bool type. We
just use small ints. A 0 is interpreted as false and anything else means true. One can use ! to
convert true/false to false/true. When one wants to use a type bool, one has to import stdbool.
h.
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2.8.1 Type Width

The width (i.e., size) of types is not defined in the C standard. It is implementation-defined.
However, it is defined that integers are signed by default.

C Data Type typical 32-bit ia32 (intel x86) intel x86-64
char 1 1 1
short 2 2 2
int 4 4 4

long 4 4 8
long long 8 8 8

float 4 4 4
double 8 8 8

long double 8 10/12 10/16

Figure 3: Default Type Widths in Bytes

”Native” types are accessible by just writing int or similar. However, one may import
stdint.h, which provides additional type definitions. This is also helpful, because int may
have different sizes on different platforms. But with the definitions from stdint.h one can
specify specific sizes etc. We may use types such as uint_32, uint_8, int_64, ....

2.8.2 Conversion/Casting

Between different integer-type types we have ’implicit’ conversion in a sense that we just reinter-
pret the bits without changing them. If we change the size of the integer, more interesting things
happen. Reducing the size just corresponds to truncation, i.e., only the unaltered fitting lower bits
are kept. (For a signed original int, this technically is implementation defined.) Increasing the
size differs depending on whether the original value is signed or unsigned. If the original value is
signed, the new value will be sign extended. If the original value is unsigned, the new value will
be zero extended.

Between integers and floating-point types are also is implicit conversion. But that conversion
actually changes the bit representation of a number so that it is best approximated in the other
number type. In the floating point section the details of this conversion will be discussed in detail.
Similarly, one can also implicitly convert between floating point types.

2.9 Statements as Expressions

In C, any statement is also an expression. Assignments etc. all evaluate to a value. Assignments
specifically, evaluate to the new/assigned value.

2.10 Operators

As with other properties too, operators in C are similar in other languages such as C++ or Java
as those are heavily inspired by C. For all operators, we shall remember their associativity, i.e.,
whether it is left-to-right or right-to-left associative. If there are multiple occurrences of the same
operator, right-to-left means that we start evaluating on the right, while left-to-right means that we
start evaluating on the left.

The following list shows operators in C in order of their presedence.

• (),[],-> are left-to-right
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• unary operators: !,˜,++,--,+,-,*,&,(type),sizeof are right-to-left

• binary operators: *,/,% are left-to-right

• binary operators: +,- are left-to-right

• <<,>> are left-to-right

• <,<=,>,>= are left-to-right

• ==,!= are left-to-right

• & is left-to-right

• ˆ is left-to-right

• | is left-to-right

• && is left-to-right

• || is left-to-right

• ? (ternary operator) is right-to-left

• =,+=,*=,/=,%=,&=,ˆ=,|=,<<=,>>= are right-to-left

• , is left-to-right

Almost all of those operators should be known. Only , may be unfamiliar as it is not com-
mon in other languages. It can chain two instructions together but discard the value of the left
expression as it returns the value of the right expression.

Notice the difference between pre- and post-increment and -decrement.

2.11 Arrays

Arrays are finite vectors of variables of the same type. An N-element array is indexed from 0 to
N-1. In contrast to high-level languages, the C compiler does not check for array bounds.

In memory, an array just is a contiguous block of memory. With N elements, we have N *
sizeof(type) contiguous types, where the array elements are just lined up. Indexing the array
corresponds to specifying an offset from the first element. If we give some bogus offset (too large,
some negative number, ...) we just offset to some memory location which has nothing to do with
the array. This may lead to program failure.

Listing 4: C Array Example

1 #include <stdio.h>
2

3 //creating array
4 float data[5];
5

6 int main()
7 {
8 data[0] = 34.0;
9 data[1] = 27.0;

10 data[2] = 45.0;
11 data[3] = 82.0;
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12 data[4] = 22.0;
13 total = data[0] + data[1] + data[2] + data[3] + data[4];
14 return (0);
15 }

We can also create multi-dimensional arrays.
C is row major. So access pattern should look like arr[0][0],arr[0][1],...,arr

[1][0],arr[1],[1],.... Always remember row-majority when iterating over arrays!

Listing 5: Multi-Dimensional Arrays in C

1 int array[3][3];
2 for(int i = 0; i<3; i++) {
3 for(int j = 0; j<3; j++)
4 array[i][j] = i+j;
5 }

For multi-dimensional arrays in C there also is another option. Instead of storing all elements
contiguously, one may also store a pointer to the row for each row. So we basically have an ’outer’
array void* array[length] and length many inner arrays type inner[length2]with
length2 being the size in the second dimension. This has fundamentally different memory (latency)
behavior. What’s most confusing about this in practice is that both types of arrays are indexed in
the same way.

Finally, arrays can be initialized while being created:

Listing 6: Array Initialization during Declaration in C

1 int a[3] = {3, 7, 9};
2 int b[3][3] = {
3 { 1, 2, 3 },
4 { 4, 5, 6 },
5 { 7, 8, 9 },
6 };

2.12 Strings

In C there isn’t a special type for strings. Instead, strings are just arrays or characters terminated
with a null byte 0x0 or \0 (this is different from 0 itself!). So strings are char string[
length];. Thus, in a string, i.e., a char array, not an arbitrarily long text can be stored. It can be
at most length-1 long as we still need to add the null byte. Forgetting the null byte is fatal because
the null byte stops functions to continue processing the string. If it is missing, they will likely run
beyond the bounds of the char array.

To then use strings as one would use strings in other languages (copying, concatenation, getting
the length, ...) one has to import string.h.

Listing 7: C String Example

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(int argc, char *argv[])
5 {
6 char name1[12], name2[12];
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7 char mixed[25], title[20];
8

9 //strcpy(name1, "Rosalinda");
10 strncpy(name1, "Rosalinda", sizeof(name1)-1);
11 //strcpy(name2, "Zeke");
12 strncpy(name2, "Zeke", sizeof(name2)-1);
13 //strcpy(title, "This is the title.");
14 strncpy(title, "This is the title.", sizeof(title)-1);
15

16 printf("%s\n\n", title);
17 printf("Name 1 is %s\n", name1);
18 printf("Name 2 is %s\n", name2);
19

20 /* returns 1 if name1 > name2 */
21 if (strcmp(name1, name2) > 0) {
22 //strcpy(mixed, name1);
23 strncpy(mixed, name1, sizeof(mixed)-1);
24 } else {
25 //strcpy(mixed, name2);
26 strncpy(mixed, name2, sizeof(mixed)-1);
27 }
28 printf("The biggest name alphabetically is %s\n", mixed);
29

30 //strcpy(mixed, name1);
31 strncpy(mixed, name1, sizeof(mixed)-1);
32 //strcat(mixed, " ");
33 strncat(mixed, " ", sizeof(mixed)-strlen(mixed)-1);
34 //strcat(mixed, name2);
35 strncat(mixed, name2, sizeof(mixed)-strlen(mixed)-1);
36 printf("Both names are %s\n", mixed);
37 return 0;
38 }

We use strncpy instead of strcpy to avoid going over the bounds of the target buffer by
specifying the maximum string size allowed.

• strlen(char[]): returns the length of a string

• strncpy(char[], char[], size_t): copies the second array to the first array upu
to a given length

• strncat(char[], char[], size_t): concatenates the second string to the first
string, adds at most the specified number of chars

• strcmp(char[], char[]): compares the two strings by comparing their chars one
by one

returns 0 if identical

returns value > 0 if: with first different char, the first string’s char is larger in ASCII
OR the first string is longer if no different up to then

returns value < 0 if: with first different char, the second string’s char is larger in ASCII
OR the second string is longer if no difference up to then
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3 Representing Integers in C

3.1 Representing Numbers

In modern machines, integers are usually stored as several bytes. With little-endian systems, we
store the least significant byte first/at the low address. With big-endian systems, we store the most
significant byte first/at the low address.

Integers are just a sequence of bits. Their decimal value interpretation depends on whether
we consider signed or unsigned integers. For unsigned integers, we consider standard binary
representation:

binary2unsigned(x) =
w−1󰁛

i=0
xi · 2i

For signed integers, we use two’s complement:

binary2signed(X) = −xw−1 · 2w−1 +
w−2󰁛

i=0
xi · 2i

8 bit decimal 16 bit decimal 16 bit hexadecimal 16 bit binary 32 bit decimal 64 bit decimal

UMax 255 65,535 FF FF 11111111 11111111 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 7F FF 01111111 11111111 2,147,483,657 9,223,372,036,854,775,807

TMin -128 -32,768 80 00 10000000 00000000 -2,147,483,658 -9,223,372,036,854,775,808

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Figure 4: Integer Ranges

In C we can use #include <limits.h> to get declared constants with those values spe-
cific for our platform. Those constants would then be ULONG_MAX, LONG_MAX, LONG_MIN
, ...

Integers are signed by default. If we want an unsigned value we need to specify it by appending
a U as in: 0U. We already discussed how casting (not) changes the bit representation. But another
question is when casting occurs. One case is explicit casing. But when mixing different integer
types, we also have implicit casting. Then, signed values are interpreted as unsigned values.

3.2 Number Operations

3.2.1 Bit-wise Operations

Notice that numbers in C are not numbers as in mathematics. They are ints, i.e., they are a
sequence of bits. On those bits, we can perform bit-level operations. Such operations can be used
on integer-type data types, i.e., everything not a float. We have & (AND), | (OR), ˜ (NOT), and ˆ
(XOR).

3.2.2 Logical Operations

C has the logical operators && (logic AND), || (logic OR), and ! (logic NOT). They consider 0 to
be false and anything non-zero as true and always evaluate to 0 or 1. Evaluation uses short-circuit
evaluation.
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Listing 8: Logical Operation in C

1 !0x41 -> 0x00
2 !0x00 -> 0x01
3 !!0x41 -> 0x01
4 0x60 && 0x55 -> 0x01
5 0x69 || 0x55 -> 0x01

3.2.3 Shift Operations

A left-shift moves all bits one to the left and adds 0s to the right. Bits pushed out on the left are
discarded.

Right shifts can be logical or arithmetic. Independent of the variant, the bits are shifted to the
right by the given number of positions. Bits pushed out on the right are discarded. With a logical
shift, we fill the void placed on the left with 0s. With an arithmetic shift, we fill the void places
with the most significant bit of the original int.

In C, we do logical shifts on unsigned ints and arithmetic shifts on signed ints.

Listing 9: Shifting in C

1 01100010U << 3 -> 00010000
2 01100010 << 3 -> 00010000
3 01100010U >> 2 -> 00011000
4 01100010 >> 2 -> 00011000
5

6 10100010U << 3 -> 00010000
7 10100010 << 3 -> 00010000
8 10100010U >> 2 -> 00101000
9 10100010 >> 2 -> 11101000

Shifting by < 0 or ≥ word size is undefined behavior.

3.3 Integer Addition & Subtraction

The one’s complement of an integer i is defined to be ˜i, i.e., all bits flipped. Then see that i+˜
i=0xFF...=-1 so that -x = ˜x + 1 is the two’s complement of an integer and corresponds
to its negation.

3.3.1 Unsigned Addition

The true sum of two unsigned integers may require one additional bit to store. However, we
discard of that bit on the left to get an int of the same size. So, the standard addition function
ignores the carry output. Instead, the C standard defines that the number ’wraps around’, i.e., is
just the result without the carry. Mathematically:

unsignedAddw(u, v) = u + v mod 2w

unsignedAddw(u, v) =
󰀫

u + v, u + v < 2w

u + v − 2w, u + v ≥ 2w

This has several mathematical properties so that integer addition in C/computer arithmetics is an
Abelian group.

• closed under addition: 0 ≤ UAddw(u, v) ≤ 2w − 1
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• commutative: UAddw(u, v) = UAddw(v, u)

• associative: UAddw(t, UAddw(u, v)) = UAddw(UAddw(t, u), v)

• 0 is the additive identity: UAddw(u, 0) = u

• Every element has an additive inverse:

- UCompw(u) = 2w − u

- UAddw(u, UCompw(u)) = 0

3.3.2 Signed Addition

On a bit level, this works just as unsigned addition: We do standard addition and discard of the
carry bit. This this is possible is even the reason why signed integers use two’s complement
format. In contrast to unsigned addition, overflow is not defined by the standard. But all sensible
implementations do this just as unsigned addition in hardware, so the behavior is usually the same.

signedAddw(u, v) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

u + v + 2w, u + v < TMinw

u + v, TMinw ≤ u + v ≤ TMaxw

u + v − 2w, TMaxw < u + v

Mathematically, this is isomorphic to unsigned addition with unsignedAdd. 2’s complement under
signedAdd forms a group just as we have for unsigned addition.

An interesting difference is the inverse, which is TCompw(u) =
󰀫

−u, u ∕= TMinw

TMinw, u = TMinw

.

3.4 Integer Multiplication

One can quickly see that adding two arbitrary integers may yield a new integer which is outside
the range of representable integers.

range for unsigned ints: 0 ≤ x · y ≤ (2w − 1)2 = 22w − 2w+1 + 1

range for signed ints:

−22w−2 + 2w−1 =≥ (−2w−1) · (2w−1 − 1) ≤ x · y

x · y ≤ (−2w−1)2 = 22w−2

To get a precise result, we would (to cover the worst case) have to double the word size with each
multiplication. If one wants such precision, it is done using ’arbitrary’ precision libraries. But in
practice we want to the result to be of the same word size as the inputs.

3.4.1 Unsigned Multiplication

As with addition, we just discard any additional bits and just keep the lower bits that fit our word
size.

UMultw(u, v) = u · v mod 2w

The mathematical properties of this correspond to a commutative ring. We don’t have a field
because the inverse generally doesn’t exist.
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• closed under multiplication

• commutative

• associative

• 1 is the multiplicative identity

• multiplication distributes over addition

3.4.2 Signed Multiplication

This is again just as for unsigned multiplication: We simply ignore/discard of the higher order w
bits and retain the word size. Accordingly, this is also isomorphic to unsigned multiplication and
addition.

3.5 Ordering Properties of Numbers

This is just a brief remark that common ordering properties of integers don’t translate to ints.
The following are NOT ebeyed by machine arithmetic:

• u > 0 ⇒ u + v > v

• u > 0, v > 0 ⇒ u · v > 0

3.6 Integer Multiplication and Division using Shifts

Integer addition and subtraction typically work in one cycle. Meanwhile, multiplication takes
significantly longer. Historically, about 20 cycles. Modern machines may manage in about 4
cycles. Division is even worse. But even if it can be done in a few cycles, the power consumption
and required chip area is still noticeably higher. Therefore, programmers have sought alternative
approaches to multiply and divide for special cases. One such special case is multiplication and
division with powers of two.

3.6.1 Left Shift / Multiplication by Powers of Two

With left-shifts, we can multiply by powers of 2. We just discard of bits which are shifted out on
the left and add zeros on the right. Accordingly, we have modular arithmetic for unsigned integers.
For signed integers, the behavior may be wired.

This can be used to do certain operations faster. For instance, u * 8 can be written as u <<
3, or u * 24 as (u<<5)-(u<<3) (may even be done in 2 cycles on superscalar machines). As
machines generally execute shift and add faster, these alternatives are chosen. Even the compiler
can detect such simplifications and generate assembly, which implements such optimizations.

3.6.2 Right Shift / Division by Powers of Two

Unsigned Integers Here, with logical shift (fill with zeros on the left), u >> k and ⌊u/2ˆk⌋
are equivalent expressions. We discard of all bits which are shifted out on the right side. This has
the same semantics as u/2k if we write it directly in C.
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Signed Integers If we do right-shifts with signed integers, we do an arithmetic shift (fill with
the sign bit on the left) and u >> k and ⌊s/2ˆk⌋ are equivalent. But this does not correspond to
what we usually want. If we divide −15213 by two, a mathematical division results in −7606.5.
Normally, we round toward 0, but with shifting we get −7607 instead, i.e., we round toward
−∞. Actually, we want to compute ⌈s/2ˆk⌉ for negative numbers. We can do so by computing
⌊(s + 2k − 1)/2k⌋. This can be done in C as we take the floor with (s+(1<<k)-1)>>k.

When one writes a regular division in C and the dividend is known, C compiles the division to
an assembly expression of the above form.

3.7 Puzzle
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4 Pointers

4.1 Memory Basics

The OS provides each program with its own virtual address space. This address space is private to
a program. In modern byte-addressable systems, each address corresponds to a byte. On a 32 bit
host, we have 232 bytes of virtual memory. On a 64 bits host, we have 264 bytes of virtual memory.
This memory is not actually available, as we do not have sufficiently large storage/memory units.
But this is the potentially usable address space.

When a program is loaded by the OS, it lazily copies regions of the executable file into the
right place in the address space while performing final linking, relocation, and other preparations.

Some top addresses are reserved by the OS, some bottom addresses contain the program itself,
global variables, ..., and somewhere in the middle we can find dynamically linked libraries.

Figure 5: Program Memory Regions overview

In that order from low to high addresses:

• .text: executable code, i.e., the program

• .rodata: read-only data like string literals and constant values.

• .data: initialized global and static variables.

• .bss: uninitialized global and static variables (zeroed at startup)

• .init: initialization code for the program

Furthermore, we have the heap and stack. Those are common concepts used in many lan-
guages. In C, the stack is automatically managed (throught the compiler & OS), while we manually
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need to put and remove elements on/from the heap. In assembly, the stack pointer is just increased
to allocate on the stack and the OS then must ensure that those virtual addresses are properly
mapped. On the other hand, the heap requires more programmer attention, because memory needs
to be allocated and freed as disucssed later.

Stack Many languages such as C, C#, Java, Python, Rust, ... use a stack. It is used to store
the state of each instantiation of functions/procedures (i.e., whatever is ’running’). This is used to
support ’reentrant’ code.

Memory on the stack is allocated by the program in frames. Each procedure/function uses a
stack frame. They allocate memory but only need it for a limited amount of time: From when
being called to returning. Stack discipline dictates how the stack is to be used by functions. This
includes:

• where to put function parameters not fitting in registers

• alignment of the stack (usually 16 bytes ?)

• where the return address is stored (return instruction pointer)

The stack grows downwards. The lower end of the stack is called the top and identified by the
stack pointer. The frame pointer points to the end of the current frame (i.e., the highest address of
the current frame).

The stack pointer is initialized by the OS and then used by the program to grow the stack (by
incrementing it). The OS randomly initializes the stack pointer for a program. This is a security
feature to prevent unauthorized access and prevent overflow attacks by being able to predict where
things will reside in memory. (We will look at those attacks later.) A consequence of this is:
When printing memory locations of variables/pointers, those will vary between executions of the
program, even if it did the same thing. Just because the base address of the stack pointer has
been varied by the OS. Unfortunately, this also makes debugging more difficult. Such random
initialization/address assignments also happen for shared library locations.

4.2 Pointers in C

A pointer is a type of variable in C, which stores the memory address of another variable. Given
a variable, we can use the & operator to get the (virtual) address of that variable, i.e., the memory
location of where the data of that variable is stored. In printf(), a pointer can be printed with
%p. We can use & not only on variables, but also on functions and get the location of the function
code in memory.

Listing 10: Pointers in C

1 int foo() {}
2 int x;
3 int a[2];
4 printf("x is at %p\n", &x);
5 printf("a[0] is at %p\n", &a[0]);
6 printf("foo is at %p\n", &foo);

Pointers are stored in special variables. We add an * to the type to indicate that we want
to store a pointer to such a type. We may declare a pointer with type *name; and can also
initialize it at the same time with type *name = address;.

The pointer type specifies what kind of data is stored at the memory location the pointer
references. This is important for pointer arithmetic. If we write void for the type, we store a
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pointer to an element of unknown type. But generally, we should always use typed pointers to
have as much support from the compiler as possible to detect mistakes and have pointer arithmetic
function properly. As the type, we may also user pointer types so that we specify pointers to
pointers of values. We may nest arbitrarily.

Listing 11: Tricky C Pointer Declarations

1 int arr[3] = {2, 3, 4};
2 int *p = &arr[1];
3 int **dp = &p;
4

5 int *p // p is pointer to int
6 int *p[13] // p is array[13] of pointers to int
7 int *(p[13]) // p is array[13] of pointers to int
8 int **p // p is pointer to pointer to int
9 int (*p)[13] // p is pointer to array[13] of int

10 int *f() // f is function returning a pointer to int
11 int (*f)() // f is pointer to function returning int
12 int (*(*f())[13])() // f is function returning pointer to array

[13] of pointers to functions returning int
13 int (*(*x[3])())[5] // x is array[3] of pointers to functions

returning pointers to array[5] of ints

One may use (not in the exam, of course) https://cdecl.org to get a translation between English
and C gibberish. The general scheme of understanding a declaration is to start at the name/inner-
most part and then always alternate between considering the next specification on the right and
left.

When having a pointer (variable), we often need to get the value, which is located at the
memory address, which is stored in the pointer. Doing so is called dereferencing and is done by
putting a * in front of the variable name. Dereferencing a double/triple/... pointer works by putting
multiple *.

Listing 12: Dereferencing Pointers in C

1 v = *pointer; // dereference a pointer
2 *pointer = value; // dereference and assign a pointer

Technically, a pointer just stores an 8 byte address (on a 64 bit system). So we can assign
anything we want and try to dereference the contents of any variable (once casted to a pointer).
Notice that when we try to access a memory location (by dereferencing a pointer with some ran-
dom value/address), we usually get a (page) segmentation fault as the program may only access
memory, which has been allocated. There are no checks where a pointer points do. We have to
make sure it is a valid address or accept that our program will crash.

In many cases it is helpful to have a pointer value which is definitely invalid to indicate that
some pointer is not set/known or similar. For that we may use the macro NULL. During prepro-
cessing it is substituted with all zeros and any attempt to dereference NULL will result in a page
segmentation fault. typeof(NULL) is void **.
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Figure 6: Box and Arrow Diagram to Visualize a Memory Layout

4.3 Pointer Arithmetic

Pointer arithmetic refers to doing addition etc. on pointers. When we do *p += 1;, we work on
the dereference pointer, i.e., the value stored at the memory address contained in the pointer. But
if we do p += 1;, we work on the pointer itself.

We already know that pointers are typed. When doing pointer arithmetic, the basic unit cor-
responds to the size of the type the pointer references. So, if we do p += 1; for int *p, we
increase the address by 4 bytes as an integer is stored in 4 bytes. But if p were to reference a
char, we would only increase by one byte as a char is stored in one byte.

So, pointer arithmetic internally works knowing the (bit-/byte-)size of different types. We
can also manually get this size in C using sizeof(...). As a parameter, we pass a type or a
value/variable. This evaluates at compile time to the size of the parameter in bytes.

4.4 Arrays & Pointers

An array is a collection of homogeneous data elements stored at continuous memory addresses.
Generally, an array is NOT a pointer - but we will see that it is mostly treated as one.

In expressions, an array is usually treated as a pointer to the first element of the array. But there
are some exceptions: sizeof(array) provides the length of the array and &array returns the
address of the array.

In fact, A[i] is always interpreted as *(A+i) by the compiler. The squared brackets []
don’t do anything besides addition and dereferencing. So, instead of a[5] we may write 5[a].
But because they are not truly pointers, assignments such as array1 = array2 do not work,
because array1 is not an pointer and thus can’t be assigned a pointer (what the array2 in the
expression is considered to be).

A special case is if we take an array as a function parameter. Then it is just special notation for
taking a pointer. If ‘array‘ is the parameter to a function, we can write ‘array = array2;‘. Getting
‘array‘ as a parameter can be done in various ways.

Listing 13: Array as Parameter in C

1 int arrfun(int *array) {}
2 int arrfun(int array[]) {}
3 int arrfun(int array[43]) {}

But notice that int arrfun(int (*array)[]){} is different. Here we consider a pointer
to an array. Thus, one must pass the array’s pointer and do some more things adequately. Only
then one can also assign. In the end, this is still a pointer and not a ’true’ array.
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Finally, pay attention to initialization. Depending on how an array is initialized (as an array
or pointer) the content may be stored on the stack or in the .data section of memory. This is
particularly relevant for strings.

Listing 14: String Initialization on Stack vs. in .data Section

1 char a[] = "Hello!"; // allocated on the stack
2 char *b = "Hello!"; // pointer allocated, points to .data

segment (read-only)

4.5 Pass-by-Value/-Reference

In general, function arguments are passed by value in C, which means that the callee gets a copy
of the argument. If the callee edits the parameters, it only edits values in its stack frame. But
this does not have an impact on the caller’s stack frame. Therefore, the callers variables remain
unchanged.

When using pointers, we can enable pass-by-reference. The callee still receives a copy of the
argument/variable. But now that copy is a pointer/memory address. And when dereferencing that
address/pointer, one works on the original value in memory. Then, the callee can modify a variable
in the scope of the caller (or even another scope or dynamic memory).

Listing 15: Pass-by-Value vs. Pass-by-Reference in C

1 // Pass-by-Value - this doesn’t work as intended
2 void swapValue(int a, int b) { // we need to pass values when

calling
3 int tmp = a;
4 a = b;
5 b = tmp;
6 }
7 // Pass-by-Reference - this works as intended
8 void swapReference(int *a, int *b) { // we need to pass pointers

when calling
9 int tmp = *a;

10 *a = *b;
11 *b = tmp;
12 }

A real-world example of pass by reference is strcpy:

Listing 16: strcpy in C

1 char *strcpy(char *dest, char *src)
2 {
3 char *r = dest;
4 while(*dest++ = *src++);
5 return r;
6 }
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5 Dynamic Memory

When dealing with memory so far, we have considered statically and automatically allocated mem-
ory. The former are global variables, and static function member variables. They are allocated
when the program is loaded in the .data section, and deallocated when the program exists. The
latter are variables inside functions, which only exist in the scope of that function. They are al-
located when the function is called and deallocated when the function returns. But this does not
cover all use cases:

• We may want some variable/memory location to outlive the lifetime of a function but not
live for the entire program duration (i.e., be global).

• Some complex data structure may be too large to fit on a stack. The stack is pre-allocated
and its size of often determined at program startup.

• A function might want to return something of which the size is unknown during compilation.
So it can’t simply return the value.

The solution is to explicitly request memory locations, which can then be used to store large
data, can be used until not longer needed/freed accross multiple functions, threads, etc., and can
be passed around by means of pointers.

The program explicity requests a new block of memory, which is then allocated by the lan-
guage runtime (with support by the OS). Dynamically allocated memory persists until it is explic-
itly deallocated by the program in C. In other languages a garbage collector might automate this
task, but in C we have much more manual control (and need to exercise it).

The difficult thing is to allocate and mange (i.e. deallocate correctly) memory explicitly and
manually. One needs to allocate the right amount of memory and then fill it with structured types.
This involves tracking the allocated addresses so that one doesn’t fill up memory with allocated
blocks that the program forgot exist. More complex data structures can be and need to be built
manually using pointers to allocated memory.

5.1 The C Memory API

The C memory API is declared in stdlib.h, which needs to be imported to be able to use the
dynamic memory system explained in the following. In that header file, we also have the type
definition of size_t. We will use size_t whenever referring to pointer indices or similar. It is
an unsigned integer of some size, commonly an unsigned long. It is large enough to hold the
size of the largest possible array in memory. We also have ptrdiff_t, which is less common,
and used to store signed integers. It is common to store the result of subtracting two pointers in a
ptrdiff_t.

5.1.1 malloc

void *malloc(size_t sz) is the function signature of the function to be used to allocate
a block of memory on the heap of the given size, where sz refers to the number of bytes, i.e., the
number of addresses to be allocated.

The function returns a pointer to the first byte of that memory, i.e., the lowest address of
the allocated memory locations. If allocation failed, we get NULL. Before using a pointer from
malloc, we should always make sure that it is not NULL and then cast it to the proper pointer
type we intend to use the memory for. Also, there is no guarantee regarding the content of the
allocated memory. We should assume there are garbage values.
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When allocation memory, we need to specify how much memory we require. As already
stated, the parameter specifies the number of bytes. A useful function to compute the number of
required bytes is sizeof(...), which is evaluated during compilation to the implementation
defined byte size of passed variable/type.

Listing 17: Malloc Allocation

1 long *arr = (long *)malloc(10*sizeof(long));
2 if (arr == NULL) {
3 return ERRCODE;
4 }
5 arr[0] = 5L;
6 // ...

5.1.2 calloc

void *calloc(size_t m, size_t sz) is the function signature of the function to be
used to allocate blocks of memory of size (nm × sz). The return behavior etc. is just as with
malloc with one important difference: The memory is filled with zeros. Hence, this is also slightly
slower than malloc.

Listing 18: Calloc Example

1 long *arr = (long *)calloc(10, sizeof(long));
2 if (arr == NULL) {
3 return ERRCODE;
4 }
5 arr[0] = 5L;
6 // ...

5.1.3 free

Once we finished using memory we allocated with malloc or calloc, we should release it so
that it can be used again. Otherwise, the OS and language runtime assume that it is still required
and may fill the entire memory.

To free memory locations that have been allocated, we need a pointer to the first byte of the
malloced/calloced memory, and then call free(pointer). Some future malloc/calloc then
might reuse that memory address. It is good practice to NULL the pointer afterwards so that we
don’t accidentally use the freed memory again.

Listing 19: Free Example

1 long *arr = (long *)calloc(10, sizeof(long));
2 if (arr == NULL)
3 {
4 return ERRORCODE;
5 }
6 // Do something ...
7 free(arr);
8 arr = NULL;
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5.1.4 realloc

Above, we allocated memory of a fixed size. But in some cases, we might want to extend our
memory region (i.e., if we want to grow an array, for instance). For this purpose, we can use
void *realloc(void *ptr, size_t size). We must pass a pointer to the first byte
in our memory block and our newly desired memory region size as the number of bytes.

Either, we get a pointer to some memory location, which has our newly requested size (and the
content of the old location). Then, the original pointer is invalid. Or we get ‘NULL‘ and couldn’t
get a larger memory region. Then, our original pointer is still valid.

Listing 20: Realloc in C

1 long *arr;
2 if (!(arr = (long *)malloc(10*sizeof(long)))) {
3 return ERRCODE;
4 }
5 // Do something ...
6 if (!(arr = (long *)realloc(arr, 20*sizeof(long)))) {
7 return ERRCODE;
8 }

5.1.5 Example

Listing 21: Dynamic Memory Usage Example in C

1 #include <stdio.h>
2 #include <stdlib.h>
3 #define INIT_SIZE 8
4

5 int main(int argc, char *argv[]) {
6 int num; // Num. of integers
7 int *arr; // Array of ints.
8 size_t sz; // Array size
9 int m, in; // Index & input num

10

11 // Allocate the initial space.
12 sz = INIT_SIZE;
13 arr = (int *)calloc(sz, sizeof(int));
14 if (arr == NULL) {
15 fprintf(stderr, "calloc failed.\n");
16 exit(1);
17 }
18

19 // Read in the numbers.
20 num = 0;
21 while(scanf("%d", &in) == 1) {
22 // See if there’s room.
23 if(num >= sz) {
24 // There’s not. Get more.
25 sz *= 2;
26 arr = (int *)realloc(arr, sz*sizeof(int));
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27 if(arr == NULL) {
28 fprintf(stderr, "realloc failed.\n");
29 exit(1);
30 }
31 }
32 // Store the number.
33 arr[num++] = in;
34 }
35 // Print out the numbers
36 for(m = 0; m < num; ++m) {
37 printf("%d\n", arr[m]);
38 }
39 free(arr);
40 return 0;
41 }

5.2 Managing the Heap

The heap, a large pool of memory/area of the virtual memory space, is where all the memory
addresses acquired through dynamic memory allocation reside.

malloc() allocates chunks of memory in the heap, free() returns them. malloc()
(must) maintain bookkeeping data in the heap to track allocated blocks so that (a) addresses are
not allocated multiple times, (b) the size of an allocated region is known, ... We will consider
the details of the implementation and bookkeeping data in the section on implementing dynamic
memory allocation and management.

But already on the level using the specified memory API provided by C, we need to know
what we are doing. Otherwise we may corrupt memory and cause our program to crash.

5.2.1 Memory Corruption

• assign past the end of an integer

• mess up pointer arithmetic by assigning unallocated pointers

• work with void * points (cast to a specific type whenever possible)

• assume malloc puts zeroes in memory

• pass pointer to free that wasn’t malloced

• free memory address twice

• use a pointer on which we called free

Listing 22: How to Corrupt Memory in C

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(int argc, char **argv) {
4 int a[2];
5 int *b = malloc(2*sizeof(int)), *c;
6 a[2] = 5; // assign past the end of an array
7 b[0] += 2; // assume malloc zeroes out memory
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8 c = b+3; // mess up your pointer arithmetic
9 free(&(a[0])); // pass pointer to free() that wasn’t malloc’ed

10 free(b);
11 free(b); // double-free the same block
12 b[0] = 5; // use a free()’d pointer
13 return 0;
14 }

5.2.2 Memory Leaks

Memory leaks happen when our code doesn’t deallocate allocated memory that is not used any-
more. This does not impact correctness, but performance. The program’s memory footprint will
keep growing. This might:

• slow down the program over time due to virtual memory trashing (discussed later)

• use up all available memory and crash (need to allocate A LOT)

• might starve other programs of memory

5.3 Structures and Unions

5.3.1 struct

In C, a struct is a type that contains a set of fields. structs don’t have member functions
but only contain fields, which are put contiguously in memory. Instances may be allocated on the
stack or heap - depending on where they are used.

Listing 23: Structs in C

1 struct structNAme {
2 type name;
3 type2 name2;
4 type3 anem3;
5 ...
6 }
7 struct Point {
8 int x;
9 int y;

10 }

To access a field of a struct we use . after the variable name followed by the field name.
When working with a pointer to a struct, we would write (*pointer).fieldName. A shorter
notation for that is pointer->fieldName.

Listing 24: Accessing Structs

1 int main(int argc, char **argv) {
2 struct Point origin = { 0, 0 };
3 struct Point *origin_ptr = &origin;
4 origin.x = 1;
5 origin_ptr->y = 2;
6 return 0;
7 }
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When assigning one struct to another struct, we assign by copying every field from one to the
other struct. When passing as parameters, structs are also passed by value (as everything in C).
When we want to pass a reference, we need to pass a pointer to the struct.

A struct is aligned in memory by the size of its largest element. And inside the struct, each
element is aligned according to its size. Because the elements are in memory in the specified order,
the compiler may add padding in between values and at the end.

5.3.2 union

A union is similar to a struct by defining a set of fields. But other than a struct, it only
holds one of those values at a time. The memory allocated (and memory alignment) for a union
corresponds to its largest field and we can access any of a union’s fields without checks for what
is currently stored in the memory location.

Access to the fields of a union works just as for a struct.

Listing 25: Unions in C

1 union unionName {
2 type name;
3 type2 name2;
4 type3 name3;
5 ...
6 }
7 union u {
8 int ival;
9 float fval;

10 char *sval;
11 }
12 union u my_uval;

5.4 Type Definitions

With typedef we can define a new type. Specifically, we create a new name for a type (which
may be a combination of various other types, pointers, arrays, functions). After declaring a new
type, we can use the new name interchangeably with the original expression. We use typedef like
this: typedef actualType newNameForThatType.

This is particularly often used with structs and unions.

Listing 26: typedef in C

1 typedef unsigned uint32_t;
2 uint32_t ui;
3 typedef int **myptr;
4 int *p;
5 myptr mp = &p;
6 typedef struct skbuf skbuf_t;
7 skbuf_t *sptr;
8

9 // instead of:
10 int (*(*x[3])())[5];
11 // we may do:
12 typedef int fiveints[5];
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13 typedef fiveints* p5i;
14 typedef p5i (*f_of_p5is)();
15 f_of_p5is x[3];

Listing 27: typedef with structs and unions

1 // option 1
2 struct list_el {
3 unsigned long val;
4 struct list_el *next;
5 };
6 typedef struct list_el el_t;
7 struct list_el my_list;
8 el_t my_other_list;
9

10 // option 2
11 typedef struct list_el {
12 unsigned long val;
13 struct list_el *next;
14 } el_t;
15 struct list_el my_list;
16 el_t my_other_list;

5.5 Dynamic Data Structures

Using pointers and dynamically allocated memory, we can manually build data structures, which
are often provided in other languages. We will consider a singly linked list as an example here.

5.5.1 Fixed Data Types

Listing 28: int Linked List in C - only pushable

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 struct node {
5 int element;
6 struct node *next;
7 };
8 struct node *Push(struct node *head, int e) {
9 struct node *n = (struct node *)malloc(sizeof(struct node));

10 assert(n != NULL); // crashes if false
11 n->element = e;
12 n->next = head;
13 return n;
14 }
15 int basicMain(int argc, char **argv) {
16 struct node n1, n2;
17 n1.element = 1;
18 n1.next = &n2;
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19 n2.element = 2;
20 n2.next = NULL;
21 return 0;
22 }
23 int pushMain(int argc, char **argv) {
24 struct node *list = NULL;
25 list = Push(list, 1);
26 list = Push(list, 2);
27 return 0;
28 }

5.5.2 Generics

Listing 29: Generic Linked List in C - only pushable

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 struct node {
5 void *element;
6 struct node *next;
7 };
8 struct node *Push(struct node *head, void *e) {
9 struct node *n = (struct node *)malloc(sizeof(struct node));

10 assert(n != NULL); // crashes if false
11 n->element = e;
12 n->next = head;
13 return n;
14 }
15 int main(int argc, char **argv) {
16 char *hello = "Hi there!";
17 char *goodbye = "Bye bye.";
18 struct node *list = NULL;
19 list = Push(list, (void *) hello);
20 list = Push(list, (void *) goodbye);
21 return 0;
22 }
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6 Implementing Dynamic Memory Allocation

We have used malloc, calloc, and free to allocate and free memory. But how do we end up
to get a pointer to a memory address? What processes happen to assign memory, make sure that it
isn’t used otherwise, we free exactly the right amount of memory when calling free, ...?

Memory allocation is a process that happens jointly between the virtual memory hardware and
kernel software. On the abstraction level of the OS, one deals with pages, which can be multiple
KB large. But application objects (structs, arrays, ...) are typically smaller. Hence, one needs
to manage to allocate pages and then assign and distribute memory blocks in pages upon calls to
malloc. (A block is here understood as a continuous range of bytes in memory.)

The program/application requests some number of bytes of memory. The dynamic memory
allocator manages and allocates pages if necessary. In other words, this makes the abstraction
between the actual heap memory and us calling ‘malloc‘ etc.

In C, memory management means that we allocate memory from some page explicitly when
malloc is called and only free that memory when free is called. In other languages that is
different. If languages have garbage collection, the garbage collector can free memory as soon as
some memory location/object becomes unreachable. And in languages such as Rust, the compiler
generates the free automatically by analyzing the program and requiring the programmer to specify
some additional information for variables/use specific programming paradigms.

6.1 The Challenge

Consider the heap, from which malloc etc. take addresses, as just one large chunk of memory.
We have several properties that implementations of the Memory API should meet for calls in
arbitrary order to malloc, calloc, realloc, and free (only when freeable):

• must respond immediately to malloc requests

• can’t control the number or size of allocated blocks

• must allocate memory blocks from free memory

• must align blocks so that they satisfy all alignment requirements (commonly, 8 byte align-
ment – may require to add padding)

• an only manipulate and modify free memory

• can’t move allocated blocks

Besides those properties that are relevant to the user, there are also some apparent challenges
that must be solved as problems internal to the implementation:

• How does the dynamic memory allocator know how much memory to free when given only
a pointer to the first byte of the block?

• How do we keep track of free blocks to distribute them to malloc requests?

• How do we handle space that is not needed, i.e., when allocating a block that does not cover
the entire free block is placed in?

• How to we pick a free block for allocation? There may be multiple that fit?

• How to we technically free a block?
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The Goal Any implementation (that must adhere to the before mentioned properties) aspires
to provide high performance and peak memory utilization. Lets consider a sequence of n mem-
ory requests R0, R1, . . . , Rk, . . . , Rn−1. Performance can clearly be understood as the number of
completed memory requests per unit time. Peak memory utilization is more difficult to understand
and we must introduce some definitions for it. When calling malloc(p), a block with a payload
of p bytes is allocated. the aggregate payload Pk is the sum of currently allocated payloads after
request Rk has been completed. And as stated earlier, all those blocks are put on the heap. The
heap grows by the implementation requesting additional pages from the OS with sbrk(). The
current heap size Hk is the current and nondecreasing size of the heap as the size of all pages
requested from the OS. Then: Peak memory utilization after k requests is Uk = maxi≤k Pi

Hk
.

Ideally, we would have Uk but that is not possible in practice, because we need to add meta
data and have fragmentation.

Meta-data is necessary to store where the blocks are located, which memory addresses are
currently allocated and which are free, what is the size of the allocated blocks, ... The meta-data
(including the length of the allocated word) is usually put in memory right before the data. That
is called the header/header file. It takes up memory but does not count towards the payload data.
Furthermore, we often also store similar information after the payload in a footer. We will see
later why that is done.

Fragmentation describes that some memory also remains unused. For instance, we might have
to add padding to guarantee alignment. Or we have free regions of memory but the to be allocated
block is too large to fit and we must request a new page despite having free regions.

6.1.1 Internal Fragmentation

The request malloc(p) actually allocates more than p bytes of memory. It allocates some
memory for a header, some memory for a footer, and in-between there are the p‘ bytes for the
payload. This has already been stated before. The header/footer are necessary (and useful) to
maintain the heap data structure.

However, additionally, we might add padding if the head, footer, and payload do not cover the
entire addresses, which are connected by the alignment requirements. So, internal fragmentation
is caused by the dynamic memory allocator - specifically, when it allocates more memory than
requested.

We say that the internal fragmentation only depends on the pattern of previous requests. Thus
it is comparatively easy to measure.

6.1.2 External Fragmentation

External fragmentation occurs when there is enough aggregated heap memory but no single free
block is large enough to cover our malloc request. Then, we (may) have to request a new page
and leave memory free in the existing pages. Because we can’t modify pointers we returned earlier,
we can’t move the allocated blocks to a different location to reduce external fragmentation.

6.2 Keeping Track of Free Blocks

There are 4 common methods to keep track of free blocks. We will consider those below. But first,
we need to discuss a technique used in multiple of those methods to reduce external fragmentation.
It iss called coalescing.
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Coalescing It may be helpful to read the part on implicit free list until coalescing is mentioned
to best understand how this is relevant.

The idea of coalescing is that if we free a block and there is/are free blocks before/after, that
we join (coalesce) them instead of introducing false fragmentation.

Figure 7: Coalescing

Listing 30: Coalesce with the next Block

1 void free_block_after(ptr p) {
2 *p = *p & -2; // clear allocated flag
3 next = p + *p; // find next block
4 if ((*next & 1) == 0) {
5 *p = *p + *next; // add to this block if not allocated
6 }
7 }

To enable bidirectional coalescing we utilize the footer, which we already mentioned earlier.
In case of the implicit free list it also stores the size and is-allocated flag and comes at the end of
the memory block. This allows us to traverse the list backwards but also requires extra space.

Coalescing takes constant time. This becomes apparent when considering the four possible
cases:

Figure 8: Four Cases of Coalescing
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Another interesting question is to decide when to coalesce. This is referred to as the coalescing
policy. Immediate coalescing: Coalesces each time ‘free‘ is called. Deferred coalescing: This
improves the performance of ‘free‘ by deferring coalescing until needed (possibly when ‘malloc‘
is called, or when external fragmentation reaches some threshold).

6.2.1 Implicit Free List

For each block we store its length (including the header, footer, etc.) and whether it is currently
allocated or not. Usually, memory blocks are aligned, so some lower-order address bits are always
0. Hence, we can just use the least significant bit to store the is-allocated flag.

Figure 9: Implicit Free List Memory Block (Header only)

When the payload is required to adhere to some alignment, we must make sure that the header
is put before the alignment requirement so that the payload and not the entire used memory region
starts at the aligned address.

Summary:

• simple implementation

• linear time worst case allocate coast

• constant time worst case free cost (event with coalescing)

• memory usage depends on the placement policy

Because of the linear time complexity, this is only used in special purpose applications.

Finding a Free Block / Placement Policies There are multiple approaches to finding a free
block in such a list. Fundamentally, we must iterate over the list and can access subsequent blocks
by jumping size bits to the next block. We must always mask out the is-allocated flag bit.

With first fit, we search the list from the beginning and choose the first free block that fits. This
can take linear time in the total number of blocks (allocated and free). The following code snippet
does not take care of requesting a new page from the OS if space is not sufficient.

Listing 31: Implicit Free List - Frist Fit

1 p = start;
2 while ((p < end) && \\ not passed end
3 ((*p & 1) ||\\ already allocated
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4 (*p <= len))) { \\ too small
5 p = p + (*p & -2);
6 \\ goto next block (word addressed)
7 }

With next fit, we start where the previous search finished. This should be faster than first fit,
because we avoid re-scanning unhelpful blocks. But research suggests that fragmentation is worse
(as we tend to allocate new pages quicker).

With best fit, we iterate over the entire list and choose he best free block, i.e., the block that
fits with the fewest bytes left over. This reduces fragmentation but runs slower as we iterate the
entire list instead of likely stopping early.

Allocating in a Free Block / Splitting When having found a suitable block, it might very well
be that the block is larger than the actually required and to be allocated space. In such a case, we
may want to split the block so that the unused parts can be allocated by another malloc call.
The decision of how much internal fragmentation we intend to allow as the result of splitting is
referred to as the splitting policy.

Listing 32: Example Splitting / Adding Implementation

1 void addblock(ptr p, int len) {
2 int newsize=((len+1)>>1)<<1; // round up to even - assumes len

covers payload and header
3 int oldsize = *p & -2; // mask out low bit
4 *p = newsize | 1; // set new length
5 if (newsize < oldsize) {
6 *(p+newsize) = oldsize - newsize; // set length in remaining

part of block
7 }
8 }

Freeing a Block In the simplest implementation we only need to clear the is-allocated flag with
void free_block(ptr p){ *p = *p & -2 }. But this can lead to what we call false
fragmentation. Instead, we do coalescing as explained at the beginning of this subsection.

6.2.2 Explicit Free List

Here, we introduce an explicit list of only all free blocks and not all free and allocated blocks.
Because the next free block could be anywhere in memory, we have to store forward/backward
pointer for a doubly-linked list. We still need the boundary tags (header and footer) for coalescing.
So the question rises where we store the next and prev pointers. Remember that the block is free,
so there is no payload. But there are bytes available for a payload due to alignment.

Summary:

• Allocation is in linear time in the number of free blocks (in comparison to all blocks a
before). This is much faster when the memory is (almost) full.

• More complicated allocate and free (need to edit the list).

• Additional memory/space needed for the links (does not increase fragmentation if alignment
already coarse enough).
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Figure 10: Explicit Free List - Allocated Figure 11: Explicit Free List - Free

Allocating Memory & Placement Policy Allocating memory includes finding a large enough-
free block through the explicit free list and then redirecting the list pointers. This means either
removing one element or redirecting the pointers to some late part of the current block if we do
splitting.

Insertion Policy An insertion policy defines where we insert a free block into the explicit free
list.

With the last-in-first-out (LIFO) policy we insert a freed block at the beginning of the free list.
This is simple to implement and works in constant time. But studies suggests that this has worse
external fragmentation.

With the address-ordered policy we insert freed blocks so that the free list’s blocks are always
in address order. Studies suggests that this has lower fragmentation. But it comes at the cost of
having to search for the corresponding place in the free list.

The following demonstrates how the LIFO policy looks with coalescing.

Case 1 Case 2

Case 3 Case 4

Figure 12: Explicit Free List coalescing
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6.2.3 Segregated Free List

This is an extension of the explicit free list. Instead of maintaining one list, we now maintain
separate lists for different sizes of blocks. Thus, we can spend less time searching for a block. The
asymptotic runtime is still unchanged, but the real-world constants are much lower as we can skip
all small free blocks caused by excessive external fragmentation.

Figure 13: Segregated Free Lists

The advantage of seglists is higher throughput and better memory utilization. It can be under-
stood as a more efficient approximation of best-fit placement.

Segregated Free List Allocator To allocate a block of size n, we search the appropriate (i.e.
first one with available blocks) free list for block of size m ≥ n. If no block is available across all
lists, one has to request additional heap memory from the OS using the system call sbrk().

Freeing a Block To free a block one can coalesce and then integrate the new free block into the
suitable list.

6.3 Garbage Collection

So far we considered explicit memory collection. Garbage collection is available in many modern
object oriented programming languages such as Java, Perl, Mathematica etc. In C and C++ only
some conservative garbage collectors exist. But they are not part of the standard language and we
don’t use them. With garbage collection, instead of manually calling free(...), the system
should automatically detect that the memory is unreferenced and free it.

Garbage Collectors need to know which memory can be freed. But in general what is used
or not depends on conditionals, which we don’t know yet. Still, an implicit memory management
system can be sure that some memory location isn’t needed anymore as soon as there is not pointer
referencing it, because the program can’t work with that location afterwards.

For this to work we need to make some assumptions regarding pointers. Those are not guar-
anteed in C, hence, garbage collection is not part of C.

• memory manager can distinguish pointers from non-pointers (only possible in C when stick-
ing to good-practices)

• cannot hide pointers (can store pointers in ‘int‘/‘long‘ in C, for example)

• all pointers point to the start of a block (not-guaranteed in C)

Classical GC algorithms are: mark-and-sweep collection (1960), reference counting (1960),
copying collection (1963), and generational collectors (1983).
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6.3.1 Garbage Collection Algorithms

6.3.2 Memory as a Graph

Most GC algorithms consider memory (locations) as a graph. Blocks in memory are nodes. We
have a pool of nodes on the stack (root nodes). Directed edges correspond to references to some
location. All unreachable nodes, which are not on the stack (or .data segment) can be freed.

6.3.3 Mark and Sweep Collection

This always allocates new memory when ‘malloc‘ is called. Only when the program runs out of
memory, the program is halted and the GC runs. The GC uses an extra mark bit in the head of
each block. It starts at each root node in the graph and sets the mark bit on it and each reachable
block. Afterwards, the GC sweeps all blocks and frees all those which are not marked.

Figure 14: Mark and Sweep Collection

Listing 33: Mark and Sweep Code Idea

1 ptr mark(ptr p) {
2 if (!is_ptr(p)) return; // do nothing if not pointer
3 if (markBitSet(p)) return; // check if already marked
4 setMarkBit(p); // set the mark bit
5 for (i=0; i < length(p); i++) { // call mark on all words
6 mark(p[i]); // in the block
7 }
8 return;
9 }

10 ptr sweep(ptr p, ptr end) {
11 while (p < end) {
12 if markBitSet(p) {
13 clearMarkBit();
14 } else if (allocateBitSet(p)) {
15 free(p);
16 }
17 p += length(p);
18 }
19 }

Here it is specifically important that the assumptions regarding pointers stated earlier are made,
including that pointers always point to the beginning of a block. This is not guaranteed in C. So
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instead of ’conservative garbage collection’ we can maintain a balanced-tree of pointers, ordered
by their size. Then, we can easily find the beginning of the allocated block for some pointer.

6.4 Memory Pitfalls

This repeats some common pitfalls with memory. We already outlined some/many of those in the
preceding sections.

Dereferencing bad Pointers Now we understand why this is troublesome. We just don’t know
if the location has been allocated at all. If it hasn’t been we likely get a page segmentation fault
as we don’t have access to that address. And if it has been allocated by chance the next pitfall
applies.

Reading uninitialized Memory In many high-level languages any data will be initialized to
zero for us. Not in C. This has the consequence that we would ready whatever has been in that
location last. And that likely seems as complete nonsense.

Overwriting Memory If we allocate memory we must make sure that we allocate enough mem-
ory. Otherwise it may happen that we exceed the allocated memory with an access or write. That
could result in corrupting the heap data structure and other data. This pitfall commonly occurs
when...

• allocating memory for a single element and then treating the pointer as an array.

• working with off-by one errors

• writing to string pointers and exceeding their allocated memory

• forgetting that pointer arithmetics behaves differently depending on the pointer type

Referencing nonexistent Variables This commonly occurs when returning a pointer to a vari-
able which has been allocated on the stack. This memory location won’t be available later and and
accessing it may be an error, corrupt other data, etc.

Freeing Blocks multiple Times The free function does the procedure considered above (and
may include coalescing). This is troublesome if the meaning of the data in the location of the spec-
ified pointer does not correspond to what the free function excepts. Its behavior is unpredictable
then.

Referencing Freed Blocks Referencing freed block corresponds basically to Dereferencing bad
pointers and/or Reading uninitialized memory.

Failing to free Blocks Well, this results in memory leaks. In the long run those will render
our program and system overwhelmed and irresponsive. In any case, we will encounter virtual
memory trashing and very bad performance.
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6.5 Finding Memory Bugs

Because the memory systems is so intricate and there are little to no guarantees/help from the
OS/compiler to avoid mistakes, even minor mistakes can be destructive. Finding those small
mistakes is surprisingly hard. But there are some tools that can help us.

• gdb: This is the conventional C debugger. It can be used to find bad pointer dereferences
but helps little with finding other memory bug.

• UToronto CSRI malloc: This is a wrapper for ‘malloc‘. It detects memory bugs at ‘mal-
loc‘ and ‘free‘ boundaries such as heap structure corrupting writes, memory writes, and
maybe freeing blocks multiple times. But it cannot detect overwriting data in the middle of
allocated blocks.

• valgrind: This is a powerful debugging and analysis technique. It works by rewriting the
text section (i.e., the actual code) of executable object files. By doing so it can help to detect:

– all errors already mentioned with before mentioned techniques
– bad pointers (at runtime)
– overwriting (at runtime)
– referencing outside of allocated blocks (at runtime)

Valgrind manages a separate memory area to keep track of our memory usage by adding
code to our program. Thus, it enables some sort of runtime environment to track errors and
problems.
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7 Some More C

7.1 Function Pointers

As their name suggests, function pointers are pointer who point to the location of where some
function resides in memory. Hence, one can call a function pointer to change the program counter
to that address to execute said function. A function pointer is a pointer just as any pointer and,
hence, needs to have a type: returnType (*name)(param1Type, param2Type);. We
can use this with typedef just as any other type.

When adding function pointers as variables to a struct, we can achieve something similar to
the concept of member variables in OO programming languages. However, we have no protection,
visibility, or other convenience features. Also, we still need to define the function somewhere.

7.2 The C Preprocessor

Now, we talk about a specific part of the C toolchain again: The preprocessor. Its executable is
called cpp. We can execute the preprocessor either with that executable or by adding the -E flag
to gcc: gcc -E foo.c.

The C processor goes over a C file before compilation and does basic text modifications/sub-
stitutions to it. A command for the preprocessor starts with #.

7.2.1 #include

An include statements can have two forms:

• #include <file1.h>: This includes system headers. The preprocessor looks in pre-
defined system folders.

• #include "file1.h": This includes custom/one’s own headers. The preprocessor
looks in the current folder.

What happens is that the preprocessor takes the content of the to be included file and replaces the
#include ... with the contents of that file. So one may also include the same file twice via
nested includes, which will most likely cause a compilation error. Avoiding double includes can
be done with macros.

7.2.2 Macros

This enables token-based text substitution. We define a macro with #define NAME SUBSTITUTION
. After a #define ..., every occurrence of NAME will be replaced with SUBSTITUTION.
With #undef NAME we can stop the effect.

Also, we can do more complex and parameterized replacements: #define BAR(x)(x+3)
. When writing BAR(y) somewhere after the define, it will substituted with (y+3). Notice
that NO evaluation happens. This is simply text substitution.

When wanting to insert a full statement, consider the use of ;. Macros are no statements,
so they don’t need a ;. If one adds one, there might end up being two. To be able to write a ;
after a macro one has to omit the ; in the substitution. Furthermore, macros can be written across
multiple lines for convenience and readability. To do so, one has to add a backslash \ at the end a
line to continue with the next line. By using those features, one can build large macros.

Listing 34: Macros Examples

1 // without ;

45



2 #define SKIP_SPACES(p, limit) \
3 { char *lim = (limit); \
4 while (p < lim) { \
5 if (*p++ != ’ ’) { \
6 p--; break; }}}
7 SKIP_SPACES(p, limit)
8 // with ;
9 #define SKIP_SPACES(p, limit) \

10 do { char *lim = (limit); \
11 while (p < lim) { \
12 if (*p++ != ’ ’) { \
13 p--; break; }}} \
14 while (0)
15 SKIP_SPACES(p, limit);

Stringizing, Concatenation When considering macros with parameters, we may either want to
paste the parameters directly, be attached in other expressions without spaces or be represented as
strings. To paste them directly, we just use them separated from other text and get substitution.
But if they are not separated, i.e., the parameter c appears in c_command in the substitution, the
c_command will not be modified. Similarly, the c in "c" won’t be substituted.

We use #c to get the string of the text of c, i.e., "c" and ## to concatenate after substitution,
i.e., remove the spaces on both sides of the ##.

Listing 35: Stringizing and Concatenation with Macros

1 #define COMMAND(c) { #c, c ## _command }
2 COMMAND(quit) // is equivalent to:
3 { "quit", quit_command }
4 #undef COMMAND
5 #define COMMAND(c) { "c", c_command }
6 COMMAND(quit) // is equivalent to:
7 { "c", c_command }

Predefined Macros The preprocessor has many predefined macros. Among those are:

• __FILE__: the name of the file being processed

• __LINE__: the line number of this usage of the macro

• __DATE__: the date when the preprocessor is running

• __TIME__: the time at which the preprocessor is being run

• __STDC__: defined if this is an ANSI standard C compiler

• __STDC_VERSION__: the version of the standard C being compiled

• . . .
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7.2.3 Conditionals

We can also use #if, #else, #endif, #ifdef, #ifndef, ... to conditionally (not) remove
sections from our file. The conditions need to use only things defined for the preprocessor with #
define ... as this happens even before compile-time and we don’t know about program values
yet. #ifdef FOO und #ifndef BAR are shorthand notations for #if defined(FOO) and
#if !defined(BAR).

Listing 36: C Preprocessor Conditionals

1 #if expression
2 ... (text1)
3 #else
4 ... (text2)
5 #endif
6

7 #ifdef FOO
8 ... (text1)
9 #else

10 ... (text2)
11 #endif
12

13 #ifndef BAR
14 ... (text1)
15 #else
16 ... (text2)
17 #endif

7.3 Assertions

A statement assert( <scalar expression> ); evaluates the expression at run time. If
it is true the statement does nothing. If it is false, it prints the file, line, and expression, which failed
and aborts execution. We need to include #include <assert.h> to use assert(...);.

assert statements are basically macros, because they are turned into code which actually
achieves the just mentioned behavior at compile-time. But they are still evaluated at run-time. We
can also add the compiler flag -DNDEBUG to remove all asserts during compilation. We would
do so because they have no benefit for the user but slightly decrease runtime. The primary purpose
is to support debugging for the developer.

Listing 37: Assertions Example

1 void array_copy(int a[], int b[], size_t count) {
2 int i;
3 assert(a != NULL);
4 assert(b != NULL);
5 for(i=0; i<count; i++) {
6 a[i] = b[i];
7 }
8 }
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7.4 Modularity

In C, we achieve modularity with header .h files. But first, we need to distinguish declaration
and definition. We already know about forward declaration. Thus, we basically understood what a
declaration is: It states that something exists somewhere, and declares how it looks, i.e., specifies
its signature. But only the definition says what it actually is/does.

Listing 38: Declaration vs. Definition in C

1 // declaration
2 char *strncpy(char *dest, const char *src, size_t n);
3 // definition
4 char *strncpy(char *dest, const char *src, size_t n)
5 {
6 size_t i;
7 for (i = 0; i < n && src[i] != ’\0’; i++)
8 {
9 dest[i] = src[i];

10 }
11 for ( ; i < n; i++)
12 {
13 dest[i] = ’\0’;
14 }
15 return dest;
16 }

During compilation, C deals with compilation units. A compilation unit is a .c file and
everything it includes, i.e., the file after preprocessing. For declarations we have two annotation
options:

• extern: the definition is either in this compilation unit or somewhere else (default)

• static: the definition is in this compilation unit and can’t be seen outside

So, how does this help us with modularity in C? A module is a self-contained piece of a larger
program. It consists of...

• externally visible stuff: functions, typedefs, global variables, cpp macros, ... (the client
should/can use this)

• internal stuff: functions, types, variables, ... (the client should not look at this)

The externally visible stuff is called the module’s interface. In C, we specify such interfaces with
header files.

Some module foo has its interface defined in foo.h via declarations for the externally visible
stuff. Clients in foo then #include "foo.h" to know about what foo can do. But foo.h
does not provide and definitions. The definitions and only internally visible declarations are

defined in the foo.c file.

Listing 39: Avoiding Including .h Files Multiple Times

1 #ifndef __FILE_H_ // __FILE_H_ if chosen uniquely for each
header file

2 #define __FILE_H_
3 ...
4 #endif
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7.5 goto

The goto statement was dominant in very early programming. However, today it is almost never
a good idea to use it. On the one hand, there is little/no performance gain to other programming
constructs. On the other hand, it makes code very confusing and difficult to understand. Still, there
certain cases where goto is helpful.

7.5.1 Early Termination of Nested Loops

When having nested loops, other languages offer labels to break some outer loop. We don’t have
this option in C. Instead, we would have to set some flag variable and then also break the outer
loop if that flag is set. But this is cumbersome. Instead we can jump out directly with a goto
statement.

1 // cumbersome version without goto
2 int a[MAXROW][MAXCOL]
3 int i,j;
4 bool found=false;
5 for(i=0; i< MAXROW; i++) {
6 for(j=0; j < MAXCOL; j++) {
7 if (a[i][j] == 0) {
8 found=true;
9 break;

10 }
11 }
12 if (found)
13 break;
14 }
15 if (found) {
16 <do processing on i and j>
17 } else {
18 <do processing when not found>
19 }
20

21 // improved with goto
22 int a[MAXROW][MAXCOL]
23 int i,j;
24 for(i=0; i< MAXROW; i++) {
25 for(j=0; j < MAXCOL; j++) {
26 if (a[i][j] == 0) {
27 goto found;
28 }
29 }
30 }
31 <do some processing when not found>
32 found:
33 <do some processing on i and j>
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7.5.2 Nested Cleanup Code

Consider the case where we have a sequence of operations. And if any one of them fails, we need
to undo al the previous steps. This might happen if some operation on a data structure fails and
we don’t want to corrupt it. Or if we allocate memory in multiple steps and want to free what we
allocated in earlier steps if one allocation fails.

Figure 15: Nested Cleanup with goto
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8 Basic x86 Architecture

8.1 Instruction Set Architectures (ISAs)

When talking about architecture, we mostly refer to the Instruction Set Architecture (ISA). It is the
part of the processor design that one needs to understand to write assembly code for the processor.
It is the ’contract’ between the processor manufacturer and the programmer/compiler. ISAs spec-
ify the set of instructions, available register, addressing modes, data formats for processing units,
etc. Some ISAs are: x86, RISC-V, MIPS, ia64, VAX, Alpha, ARM, ...

A microarchitecture, on the other hand, is a specific implementation of the ISA. The uarch
then defines some aspects, which the developer/compiler doesn’t need to know to create correct
programs. Such as the cache size, core frequency, etc.

There have been various ISAs in the past. IBM S/360 has been the first to adapt the just
described separation between ISA and uarch. When writing C programs, knowing the ISA is suf-
ficient to write correct code. However, considering the uarch unlocks additional opportunity for
performance optimizations.

ISA is a form of abstraction for the programmer. It specifies the instructions and assembly
language to create programs for uarchs that implement this ISA. How the computer works looks
different, depending on the abstraction layer.

• Above the ISA: This is about how to program the machine.

We see a processor state as registers, memory, ... We can use instructions (addl, movq,
leal, ...), which are presented in bytes to the processor to modify the state. Instructions
appear to execute in-order.

• Below the ISA: This consider what needs to be built to execute programs.

Doesn’t need to conform to sequential instruction execution or any other requirement of
the ISA as long as it appears it does. Code may be executed out-of-order. There may be
more/different registers than the ISA specifies, which are, however, not modifiable by the
program.

8.1.1 Complex Instruction Set Computer (CISC)

This was dominant throughout the mid-80s. The basic philosophy was: Add instructions to per-
form ’typical’ programming tasks. So if some complex operation was common, one would usually
introduce an instruction to cover this complex task with one instruction. Some characteristics:

• stack-oriented instruction set (pass arguments and return pointer via stack, explicit push/pop
instructions)

• arithmetic instructions can access memory (complex address calculation)

• condition codes (’memorize’ side effects of arithmetic and logical instructions)

8.1.2 Reduced Instruction Set computer (RISC)

This was popularized at Stanford and Berkeley as folks started to challenge the idea of adding in-
structions for everything and having very complex systems. Instead, they opted for fewer, simpler
instructions. One usually needs more instructions to get things done, but instructions can also be
executed faster and with simpler hardware. Some characteristics:
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• register-oriented instruction set (more registers, used for arguments/return pointers/tempo-
raries/...)

• load-store architecture (memory access separated with specific instructions)

• no condition codes

• conditional instructions (less branches, higher code density)

• explicit delay slots (e.g. MIPS) - quickly abandoned

8.1.3 CISC vs. RISC

RISCs usually have highly uniform operations (all instructions have same length, take similar
time to execute, operations between registers, operate on 64 or 32 bit quantities, ...). Note that the
variable instruction length of CISCs has little impact on execution performance today.

CISC proponents say they are easy for the compiler and provide smaller code sizes. RISC
proponents say they are better for compiler optimizations and run fast with simple chip design.
But today the choice of not a technical issue as basically anything can run fast. Still, for embedded
processors RISC still makes sense for size, cost, and power constraints.

8.2 x86 History

The x86 architecture was born with the 8086 processor (1978), which was the first 16-bit processor.
(x86-16 architecutre) Later came the 80386 (1985), which extended the capabilities to 32 bits. This
was capable of running Unix. Modern linux for 32-bit uses no instructions introduced after this.
(x86-32/ia32 architecture) The Pentium 4F (2005) introduced 64-bit processors for Intel. (x86-
64/em64t architecture) Throughout those advancements, clock speeds increased noticeably just as
the transistor count did.

Some features which were added to the x86 ISA over time are:

• instructions for multimedia operations (parallel operations on 1, 2, 4-byte data)

• more efficient conditional operations

• virtualization extensions

• multiprocessor synchronization

8.3 Basics on Machine Code

When looking as x86 assembly, we will consider the AT&T syntax, which is most commonly used
for Unix. The Intel syntax is more present when using windows and just switches the order of the
operands. A processor is very complicated but for writing assembly a simplified understanding is
sufficient. We have the CPU, which consists of:

• The Program Counter (PC) that contains the address of the next instruction. This ist the rip
register on x86-64.

• The register file contains the registers accessible and heavily used by programs.

• condition codes store status information/side effects from arithmetic and logic operations
for conditional branching.

• Then we have the memory which provides the instructions to the processor. Also, we can
provide addresses to get the data stored at the specified location. Through memory we have
access to code, user data, (some) OS data, etc. The stack and heap are locate in memory.
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8.3.1 Asembling

After having written a program, it is first compiled into assembly. To compile a .c file into
assembly (an .s file), we can use the -S flag: gcc -S code.c. When also adding -O0 we
turn of optimizations and get a raw translation of our program. What we will see after this can be
understood after reading further about instructions/operations, ... below.

Afterwards, the assembly is translated into an .o object file in which every instruction is
binary encoded. This is a nearly-complete image of the executable code.

Notice that these steps can also (somewhat) be reserved. Disassembling turns an object file
intro the corresponding instructions. However, some part of the assembly .s file gets removed
during conversion to an .o file. Thus, the disassembled .s file usually misses some stuff from the
original .s file. We can disassemble with objdump -d p. This works on objects file but also
executables, which are created after linking.

One can get a similar result by using the gdb debugger. We do so by writing disassemble
name in a gdb session to disassemble the function name. With gdb we can also examine bytes

at some memory location. We can write x/30bx sum to examine (x/) 30 bytes (30b) in hex
(x) at sum (sum).

Finally, the linker resolves references between .o files and combines the .o file with static
run-time libraries. Some libraries are also dynamically linked when the program begins execution.

8.3.2 Assembly Data Types

In x86 assembly we can work with integer data of 1, 2, 4 or 8 bytes. This stores whatever we just
want to represent as bits in memory. Then we also have floating point data of 4, 8, or 10 bytes.
This is for floating point numbers and will be considered later. We do not have aggregated types
(arrays, ...). Those are all build on top of the basic integer types etc. from the compiler.

8.3.3 Assembly Code Operations/Machine Instructions

With instructions we perform operations to alter the state of the system. Using those, we can:

• perform arithmetic/logic functions on registers or memory data

• transfer data between memory and register

• transfer control (unconditional jumps to/from procedures, conditional branches)

With x86 assembly, instructions have the format op operand1, operand2, where not all
operands may be used with all instructions. Registers are identified by a unique name. With
AT&T syntax, the result of an operaiton on operand1 and operand2 is put in operand2.
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8.4 x86 Architecture

8.4.1 Registers

Figure 16: Registers of Intel 8086 / x86-16 Architecture

With %ah, %al, etc. we can access the 8 high or low bits of a 16 bit unit. Here we have 6 general
purpose registers. The six registers had some special meaning in earlier versions. That’s the reason
for the strange naming. They are acronyms for their original meaning.

All other register cannot be freely used. The %ip, %bp, %sp, and %sr are special-purpose
and must be used according to their definition/meaning.

The x in addresses stands for extended, because originally, we couldn’t access the the four top
16 bit registers on the preceding 8-bit machine.

Figure 17: Registers of Intel 80386 / x86-32 Architecture

With the step to 32 bits with the 80386, the register size was increased. An e is preceding
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when wanting to access the 32 bit version and not just work on the lower 16 bits with the same
names as before. The e stands again for extended.

Figure 18: Registers of x86-64 Architecture

With the step to x86-64 the registers were extended again by adding an r in front of each
naming. Another change was that the ordering of the first four registers now is alphabetically.
Furthermore, the %rsp and %rbp (stack pointer and base pointer) have become general-purpose
registers too. Anyway, they are still used for their original purposes almost always. Finally,
an additional 8 general purpose registers have been added. Conveniently those are numbered in
chronological order.

If we set the lower 8 or 16 bits, the upper bits remain unchanged.
But if we set the lower 32 bits, the upper 32 bits will be zeroed out.

8.4.2 Move Instructions

We use the movx source, dest instruction to move data (where x is replaced with an element
from {b, w, l, q}).

• b is 1-byte.

• w is a word / 2-bytes.

• l is a long-word / 4-bytes.

• q is a quad-word / 8-bytes.

We also have movABx, where x is as above. A is either s for sign extending the remaining-bits
of the register (if only writing to lower bits) or z for zeroing out. The B identifeis what we choose
as input, i.e., what size our source has.

We have different types of data we can choose as operands:

• immediate: constant integer data
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example: $0x400, $-533 (we have to write the prefix $).

Those values are encoded with 1, 2, 4, or 8 bytes

• register values (we can choose one of the 16 general purpose registers)

example: %eax, %r14d

• values from memory (the number of bytes from memory depends on the instruction type)

example: (%rax)

We can combine those data types mostly arbitrarily. But we can’t specify an immediate as a
destination or have to memory accesses in the same operation.

Memory addressing is more capable than just staed. It follows the general scheme of D(Rb
,Ri,S), where D is a constant displacement (offset), Rb is the base register address (any of the
general purpose integer registers), Ri is the index register, and S specifies a scale as one of the
values 1, 2, 4, or 8. The memory access corresponds to this: Mem[Reg[Rb] + S*Reg[Ri]
+ D]. We may leave out some of those ’parameters’.

In addition to memory accesses, we also have the lea operand1, operand2 operation.
Ir computes the address according to the same scheme but instead of accessing that location, the
address is saved to the second operand. So this corresponds to Reg[Rb] + S*Reg[Ri] + D.

8.5 x86 Integer Arithmetic

Integer arithmetics in x86 assembly generally uses two-operand instructions. As with move in-
structions, the suffix determines the size we operate on. I.e., if there is an l in the end, we operate
on long-words (32 bits) etc.

instruction format computation
addl src, dest dest <- dest + src
subl src, dest dest <- dest - src
imull src, dest dest <- dest * src
sall src, dest dest <- dest << src

sarl (arithmetic shift) src, dest dest <- dest >> src
shrl (logical shift) src, dest dest <- dest >> src

xorl src, dest dest <- dest ˆ src
andl src, dest dest <- dest & src
orl src, dest dest <- dest | src

instruction format computation
incl dest dest <- dest + 1
decl dest dest <- dest - 1
negl dest dest <- -dest
notl dest dest <- ˜dest

We can also use leal for (basic) arithmetic instructions. Because leal is usually very op-
timized in hardware because it uses the same frequently used unit as for memory accesses, this is
rather fast.

The compiler is also quite smart. So when writing C code it might rearrange and change stuff
so that the observed behavior is identical while the specific computation is different.
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Listing 40: Compiler Evaluation

1 int logical(int x, int y) {
2 int t1 = xˆy;
3 int t2 = t1 >> 17;
4 int mask = (1<<13) - 7;
5 int rval = t2 & mask;
6 return rval;
7 }
8 // is assembled into
9 logical:

10 movl %edi, %eax
11 xorl %esi, %eax
12 sarl $17, %eax
13 andl $8185, %eax
14 ret

8.6 Condition Codes

The x86 architecture specifies some additional special-purpose one-bit registers, which can’t be
set explicitly. They are set implicitly/as a side effect by arithmetic operations performed in the
ALU. So ‘leal‘ doesn’t set those bits. But a regular add or multiply does. They are always set to
indicate whether their respective condition holds on the produced output. The condition codes are
then used for branching etc.

• CF: Carry Flag (overflow for unsigned)

set if carry out from the most significant bit (unsigned overflow)

• ZF: Zero Flag

set if t == 0 (t is the operation result)

• SF: Sign Flag (for signed)

set if t < 0 (t is the operation result)

• OF: Overflow Flag (for signed)

set if 2’s complement (signed) overflow, (a>0 && b>0 && t<0)|| (a<0 && b<0
&& t>=0) (t is the operation result)

There are also instructions, which compute some value, i.e., do some arithmetic operation (at
least as long as necessary to compute the condition codes) without actually saving the result.

• cmpl src2, src1 computes src1-src2 and sets the condition codes without storing
the result.

• testl src2, src1 computes src1 & src2 and sets the condition codes without
storing the result

Conditions codes are mostly used for conditional branching. But we can also extract the bit
values and put them into general purpose registers with special instructions.
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instruction condition description
sete ZF equal / zero
setne ˜ZE no equal / not zero
sets SF negative
setns ˜SF non-negative
setg ˜(SFˆOF)&˜ZF greater (signed)
setge ˜(SFˆOF) greater or equal (signed)
setl (SFˆOF) less (signed)
setle (SFˆOF)|ZF less or equal (signed)
seta ˜CF&˜ZF above (unsigned)
setb CF below (unsigned)

We use the same syntax for doing conditional jumps.

instruction condition description
jmp 1 unconditional
je ZF equal / zero
jne ˜ZE no equal / not zero
js SF negative
jns ˜SF non-negative
jg ˜(SFˆOF)&˜ZF greater (signed)
jge ˜(SFˆOF) greater or equal (signed)
jl (SFˆOF) less (signed)
jle (SFˆOF)|ZF less or equal (signed)
ja ˜CF&˜ZF above (unsigned)
jb CF below (unsigned)
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9 Compiling C Control Flow

In this section we consider how control flow structures from the C language are translated to (x86)
assembly.

9.1 if-then-else statements

If conditions work by testing the opposite conditions and if the opposite is true, we do a conditional
jump to the section after the loop content. If we have an else condition, then the assembly for that
comes after the if code and when the if-code finishes, it jumps after the else section. The ternary
operator is compiled to an if statement as just described.

Listing 41: If Statement in C

1 #include <stdio.h>
2 int putmax(int x, int y) {
3 int result;
4 if (x> y) {
5 result = printf("%d\n", x

);
6 } else {
7 result = printf("%d\n", y

);
8 }
9 return result;

10 }

Listing 42: Compiled If Statement

1 putmax:
2 subq $8, %rsp
3 cmpl %esi, %edi
4 jle .L2
5 movl %edi, %edx
6 movl $.LCO, %esi
7 movl $1, %edi
8 movl $0, %eax
9 call __printf_chk

10 jmp .L3
11 .L2:
12 movl %esi, %edx
13 movl .LC0, %esi
14 movl $1, %edi
15 movl $0, %eax
16 call __printf_chk
17 .L3:
18 addq $8, %rsp
19 ret

However, in certain cases the assembly can be optimized. Specifically if the code blocks of
the if/else block don’t call functions or have other side effects. Then it is often faster to compute
both cases and then use a conditional move to keep the right result in the end. This is used for
many very short if/else conditionals. This is more efficient because we don’t have the overhead
from branching.

Listing 43: If Statement in C Optimized

1 int absdiff(int x, int y) {
2 int result;
3 if(x>y) {
4 result = x-y;
5 } else {
6 result = y-x;
7 }
8 return result;
9 }

Listing 44: Compiled If Statement Opti-
mized

1 absdiff:
2 movl %edi, %eax
3 subl %esi, %eax
4 movl %esi, %edx
5 subl %edi, %edx
6 cmpl %esi, %edi
7 cmovle %edx, %eax
8 ret
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9.2 do-while loops

Here we use a backward branch to continue looping. I.e., we execute our code once and if the
condition then holds, we again jump to the beginning of the loop content.

Listing 45: Do-While Loop in C

1 int fact_do(int x) {
2 int result = 1;
3 do {
4 result *= x;
5 x = x-1;
6 } while (x > 1);
7 return result;
8 }

Listing 46: Compiled Do-While Loop

1 fact_do:
2 movl $1, %eax
3 .L3:
4 imull %edi, %eax
5 subl $1, %edi
6 cmpl $1, %edi
7 cmpl $1, %edi
8 jg .L3
9 rep ret

9.3 while loops

while loops can be implemented in various ways (just as other control flow structures can be
too). gcc’s approach is to test the condition initially. If it doesn’t hold we jump to the section
after the loop. If it does, a do while basically follows.

Listing 47: While Loop in C

1 int fact_while(int x) {
2 int result = 1;
3 while (x>1) {
4 result *= x;
5 x = x - 1;
6 };
7 return result;
8 }

Listing 48: First Compiled While Loop

1 int fact_while_goto1(int x) {
2 int result = 1;
3 if (!(x>1))
4 goto done;
5 Loop:
6 result *= x;
7 x = x - 1;
8 if (x>1$
9 goto Loop;

10 done:
11 return result;
12 }

A newer style for while loops (jump-to-middle while) is to not have separate code for the
initial condition test. Instead we do an unconditional jump to the beginning of the test of the do-
while. So, we have basically a do while with one additional jump. This approach is chosen today,
because unconditional jumps/‘goto‘s don’t incur any noticeable performance penalty these days.

Listing 49: Second Compiled While Loop

1 int fact_while_goto2(int x) {
2 int result = 1;
3 goto middle;
4 Loop:
5 result *= x;
6 x = x - 1$;
7 middle:
8 if (x>1)
9 goto Loop;
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10 return result;
11 }

9.4 for loops

A for loop is basically a while loop with some initial variable setup and some variable update and
test at the end of each iteration to check whether to execute the next iteration.

Listing 50: p-th power of x

1 for (result = 1; p != 0; p = p>>1) {
2 if (p & 0x1)
3 result *= x;
4 x = x*x;
5 }

Listing 51: Compiled For Loop

1 result = 1;
2 if (p == 0)
3 goto done;
4 loop:
5 if (p & 0x1)
6 result *= x;
7 x = x*x;
8 p = p >> 1;
9 if (p != 0)

10 goto loop;
11 done:

Listing 52: Compiled For Loop - Modern

1 result = 1;
2 goto middle;
3 loop:
4 if (p & 0x1)
5 result *= x;
6 x = x*x;
7 p = p >> 1;
8 middle:
9 if (p != 0)

10 goto loop;
11 dome:

9.5 switch

9.5.1 jump tables

This is efficient if we only have a small range of values as cases to check. We then add a static
jump table with target addresses for each case and index this table with the variable on which to
do the switch after doing a sanity check that we don’t definitely have the default case in which we
jump to it directly.

Listing 53: Jump Table Setup

1 .section .rodata
2 .align 8
3 .align 4
4 .L4:
5 .quad .L8 # x=0
6 .quad .L3 # x=1
7 .quad .L5 # x=2
8 .quad .L9 # x=3
9 .quad .L8 # x=4

10 .quad .L7 # x=5
11 .quad .L7 # x=6

Listing 54: Switch Statement Compiled

1 switch_eg:
2 movq %rdx, %rcx
3 cmpq $6, %rdi
4 ja .L8
5 jmp *.L4(,%rdi,8)
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9.5.2 sparse switch statements via binary search tree

But if we have many cases or large values for our cases the previous approach is undesirable,
because it consumes a lot of memory and we might run into cache issues. The following example
would generate a 1000 entry jump table, for instance.

Listing 55: Switch Statement

1 int div111(int x) {
2 switch(x) {
3 case 0: return 0;
4 case 111: return 1;
5 case 222: return 2;
6 case 333: return 3;
7 case 444: return 4;
8 case 555: return 5;
9 case 666: return 6;

10 case 777: return 7;
11 case 888: return 8;
12 case 999: return 9;
13 default: return -1;
14 }
15 }

Listing 56: Compiled Switch Statement as
Binary Search Tree

1 div111:
2 cmpl $444, %edi
3 je .L3
4 jle .L28
5 cmpl $777, %edi
6 je .L10
7 jg .L11
8 cmpl $555, %edi
9 movl $5, %eax

10 je .L5
11 cmpl $666, %edi
12 movb $6, %al
13 jne .L2
14 .L5: // done
15 rep ret
16 .L2: // default case
17 .L3: // case 444
18 .L28: // cases 0-333
19 .L10: // case 777
20 .L11: // cases 888-999
21 // ...

9.6 procedure calls and returns

We already discussed the stack as the area of memory where local variables etc. are managed. We
say that it is managed with stack discipline, i.e., by respecting conventions on how to use the stack.
Historically, the stack pointer had to be located in %rsp (or their lower-bit equivalents) because
the concept of a stack is baked in to x86. Today we could use a different register but still stick to
the convention.

There exist some basic instructions to interact with the stack through the stack pointer. In
practice we only use those instructions in a limited setting. If we want to allocate a larger region
on the stack, we usually work on the stack pointer directly. However, for single values this still is
used.

• pushl src: Fetches the operand at src, decrements %rsp by 4 and then write the
operand to that address. Equivalently, we could use pushw, etc.

• popl dest: Reads the operand at address %rsp and increments %rsp by 4, and write
the operand to dest.

The stack is used to support procedure calls and returns. When calling a function, we write
call addr, where addr is the location of the function in memory to which the instruction
pointer is changed. We can also use a label in assembly language. That adds the address of the
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next instruction to the stack and jumps to the target address. So, the return address for a function
is stored on the stack. Returning can be done with ret, which reads the return address, removes
it from the stack and jumps to that address.

This is a variation from the original wheeler jump. It stored the return address in a special
register. On other ISAs we have that with ’jump and link’ instructions. Then, this register is callee
saved, or at least it must make sure to return to that address. x86 is different, because we don’t
store the return address in a special register (i.e., link to it for returning later) but simply put it on
the stack instead.

Furthermore, when passing arguments to a function and their size/number exceeds what we
can store in the designated registers by the calling conventions, we put them on the stack before
the return address.

Figure 19: x86-64 Full Stack Frame

Usually, the stack is aligned. Mostly to 16 bytes. Thus, a function can assume that this holds
when it is called and must make sure that it holds again once it calls a function itself.

9.7 calling conventions

In x86 and especially other ISAs we have plenty registers and the ISA does not define how to
use them. But the calling conventions specify a common schema to pass arguments to a method,
provide a return value etc. This is helpful to be able to link binaries/assembly from different
compilers etc. The calling conventions specify a common interface between the caller and the
callee.

The calling conventions boil down to the special meaning of some registers and rules on who
(caller or callee) saves which registers. The procedure executing ‘call‘ is the caller and the proce-
dure which we jump to is the callee. Caller saved registers are those registers saved and restored
by the caller (by using the stack) before calling another procedure. Callee saved registers are those
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registers saved and restored by the callee (by using the stack) before using them itself.

name meaning who saves?
%rax return value, #args caller
%rbx base pointer callee
%rcx 4th argument caller
%rdx 3rd argument caller
%rsi 2nd argument, 2nd return value caller
%rdi 1st argument caller
%rsp stack pointer callee
%rbp frame ptr callee
%r8 5th argument caller
%r9 6th argument caller
%r10 static chain ptr caller
%r11 used for linking caller
%r12 callee
%r13 callee
%r14 callee
%r15 callee

This table specifies six registers for arguments. If we need to pass more than 6 parameters, the
rest is passed on the stack as specified in the previous subsection. These registers (if not used for
parameters) can be used as caller saved registers. All references to the stack frame are done via
the stack pointer %rsp. Thus, we don’t need to update the %rbp (base pointer).

If we need to (re)store some registers or otherwise need to handle more data than fits in the
available registers, we need to work on the stack. If we are a leaf procedure, we can access a few
bytes beyond the stack pointer in the red zone without risking a page fault or stack overflow. The
red

However, if we call another procedure ourselves or want to be sure, we should allocate a stack
frame. This is done by decrementing the stack pointer once according to our memory requirements
& stack alignment requirements. Once we want to return from the function, we can deallocate
memory from the stack by increasing the stack pointer by the same amount we decrement it earlier.

9.7.1 Examples

Factorial Here, the register %rax is used within the function without worrying about existing
data. The register %rbx is used too, but we save the contents before and put it back afterwards.
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Listing 57: Factorial in C

1 int rfact(int x) {
2 int rval;
3 if (x<=1)
4 return 1;
5 rval = rfact(x-1);
6 return rval * x;
7 }

Listing 58: Factorial Compiled

1 rfact:
2 pushq %rbx
3 movl %edi, %ebx
4 movl $1, %eax
5 cmpl $1, %edi
6 jle .L2
7 leal -1(%rdi), %edi
8 call rfact
9 imull %ebx, %eax

10 .L2:
11 popq %rbx
12 ret

Locals in the Red Zone .

Listing 59: Swap Using Local Array

1 void swap_a(long *xp, long *
yp) {

2 volatile long loc[2];
3 loc[0] = *xp;
4 loc[1] = *yp;
5 *xp = loc[1];
6 *yp = loc[0];
7 }

Listing 60: Swap Compiled

1 swap_a:
2 mov1 (%rdi), $rax
3 movq %rax, -24(%rsp)
4 movq (%rsi), %rax
5 movq %rax, -16(%rsp)
6 movq -16(%rsp), %rax
7 movq %rax, (%rdi)
8 movq -24(%rsp), %rax
9 movq %rax, (%rsi)

10 ret

Non-Leaf Function Without Stack Frame .

Listing 61: Swap Without Stack Frame

1 long scount = 0;
2

3 void swap_ele_se(long a[],
int i) {

4 swap(&a[i], &a[i+1]);
5 scount++;
6 }

Listing 62: Swap Compiled

1 swap_ele_se:
2 movslq %esi, %rsi
3 leaq (%rdi, %rsi, 8), %rdi
4 leaq 8(%rdi), %rsi
5 call swap
6 incq scount(%rip)

Call Using a Jump This optimizes a function call if it does not require a stack frame itself and
does not need to result execution after calling another function. Then that function can just return
the original caller.
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Listing 63: Swap Using Local Array

1 long scount = 0;
2

3 void swap_ele(long a[], int i
) {

4 swap(&a[i], &a[i+1]);
5 }

Listing 64: Swap Compiled

1 swap_ele:
2 movslq %esi, %rsi
3 leaq (%rdi, %rsi, 8), %rdi
4 leaq 8(%rdi), %rsi
5 jmp swap

9.8 variadic functions

We have used printf(...) at various occasions before. Now that we have seen the calling
conventions and how to pass arbitrarily many arguments, we can understand how this function
processes its parameters.

In C, printf is declared like this: int printf(const char *format, ...);,
which is C’s syntax for variadic functions. Let’s consider void print_integers(unsigned
num_ints, char *msg, ...); to make it easier to understand what’s going one. We

may invoke the following calls, which returns the expected values.

• print_integers(0, "Hello");

• print_integers(1, "The answer...", 42);

• print_integers(2, "A couple", 2, 4);

• print_integers(10, "Quite a few", 10, 8, 7, 6, 5, 4, 3, 2, 1)
;

Listing 65: Implementation of print_integers

1 #include <stdio.h>
2 #include <stdarg.h> // library to use work with variable amounts

of arguments
3

4 void print_integers(unsigned num_ints, char *msg, ...)
5 {
6 printf("%s\n", msg);
7 printf("About to print %u ints:\n", num_ints);
8 va_list ap; // variable which tracks the currently considered

argument (similar to an iterator)
9

10 va_start(ap, msg); // initialization of ap based on the last
fixed argument

11 for(int i = 0; i<num_ints; i++)
12 {
13 int j = va_arg(ap, int); // return the next argument cast to

an int
14 printf("int %d = %d\n", i, j);
15 }
16 va_end(ap); // free up the iterator
17 }
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va_arg clearly can’t be a function as it accepts a type as a parameter. It may be a macro. On
modern machines, gcc turns this into compiler intrinsic. So it is replaced with code provided by
the compiler. We can see this when looking at the definitions in stdarg: #define va_arg(
v,l)__buildin_va_arg(v,l).
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10 Compiling C Data Structures

10.1 One-Dimensional Arrays

If we allocate for T A[L] (type T, length L), we allocate a continuous region of L * sizeof(
T) in memory.

Listing 66: Array Access in C

1 int get_digit(zip_dig z, int
dig) {

2 return z[dig];
3 }

Listing 67: Array Access Compiled

1 get_digit:
2 movsql %esi, %rsi
3 movl (%rdi,%rsi,4), %eax
4 ret

Figure 20: Looping over an Array in C

1 int zd2int(zip_dig z)
2 {
3 int i;
4 int zi = 0;
5 for (i = 0; i < 5; i++) {
6 zi = 10 * zi + z[i];
7 }
8 return zi;
9 }

1 int zd2int(zip_dig z)
2 {
3 int zi = 0;
4 int *zend = z + 4;
5 do {
6 zi = 10 * zi + *z;
7 z++;
8 } while (z <= zend);
9 return zi;

10 }

1 zd2int:
2 .LFB0:
3 endbr64
4 leaq 20(%rdi), %rcx
5 xorl %eax, %eax
6 .L2:
7 leal (%rax,%rax,4), %edx
8 movl (%rdi), %eaxaddq $4, %rdi
9 leal (%rax,%rdx,2), %eax

10 cmpq %rcx, %rdi
11 jne .L2
12 ret

10.2 Nested Arrays

If we have T A[R][C], we have a 2D array of data type T with R rows and C columns. If type T
requires K bytes, this has size R*C*K bytes in memory. It is arranged in row-major order.
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1 typedef int[][] zip_dig;
2 zip_dig pgh[4] =
3 {{1, 5, 2, 0, 6},
4 {1, 5, 2, 1, 3 },
5 {1, 5, 2, 1, 7 },
6 {1, 5, 2, 2, 1 }};

Figure 21: 2D Array in Memory

To access some element in a row, we add j*K for the j-th element in that row to the base
address for that row. In total, to access A[i][j] (of elements of type T with K bytes each), we
get A + i*(C*K)+ j*K = A + (i*C+j)*K.

Listing 68: 2D Array Access in C

1 int get_pgh_digit(int index,
int dig)

2 {
3 return pgh[index][dig];
4 }

Listing 69: 2D Array Access in Assembly

1 get_pgh_digit:
2 endbr64
3 movslq %edi, %rdi
4 movslq %esi, %rax
5 leaq (%rdi,%rdi,4), %rsi # 5

* index
6 addq %rax, %rsi # dig + 5 *

index
7 leaq pgh(%rip), %rax
8 movl (%rax,%rsi,4), %eax # *(

pgh + 4*(dig + 5*index))
9 ret

When accessing arrays and interpreting a[i][j] as just described, it would be reasonable
that in our pgh example pgh[0][19] and pgh[4][-1] correspond to the same element. In
practice this holds for most compilers but is not guaranteed by the C standard. The C standard
(C99) only guarantees the expected behavior for access at most 1 beyond the bound of the array.
I.e., a[2][5] is guaranteed while a[2][6] is not in our example.

10.3 Multi-Level Arrays

Variable multi-level arrays can contain the same data as nested arrays. However, multi-level arrays
require more memory. With this cost, we ’buy’ additional flexibility.

Listing 70: Multi-Level Array in C

1 zip_dig cmu = { 1, 5, 2, 1, 3 };
2 zip_dig mit = { 0, 2, 1, 3, 9 };
3 zip_dig ucb = { 9, 4, 7, 2, 0 };
4 int *univ[3] = {mit, cmu, ucb};

This has the benefit of being more flexible. The subarrays may have different length, for
instance. But it also requires more memory as we now need to store the pointers to the subarrays
in the main arrays. Also, we require multiple memory accesses to get to the actual value so that
the access latency is increased.

Despite this being different than nested arrays, we can still use the same indexing syntax
in C. But it will be compiled to different assembly. An access array[a][b] to an array like
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int array[20][30] would be compiled to something implementing Mem[Mem[array+8*
a]+4*b].

Listing 71: Multi-Level Array Indexing in C

1 int get_univ_digit(
2 int index,
3 int dig
4 ) {
5 return univ[index][dig];
6 }

Listing 72: Compiled Listing 71

1 get_univ_digit:
2 endbr64
3 movslq %edi, %rdi
4 leaq univ(%rip), %rax
5 movslq %esi, %rsi
6 movq (%rax,%rdi,8), %rax
7 # Mem[univ+8*index]
8 movl (%rax,%rsi,4), %eax
9 # Mem[... +4*dig]

10 ret

Notice that with nested arrays, we were able to go beyond the borders of one array to access
the last/first element of another array. But this does not hold here, because we are not guaranteed
that the subarrays are put continuously in memory. The pointers may lead to arbitrary locations.

10.4 Dynamic Arrays

Above we have considered array with static sizes. But though explicit memory management, we
can also work with dynamic array sizes. But we then must do the index computation explicitly.
Also accessing elements is costly, because we must do a multiplication.

Listing 73: Dynamic Array Allocation

1 int * new_var_matrix(int n) {
2 return (int *)
3 calloc(sizeof(int), n*n);
4 }

Listing 74: Dynamic Array Indexing

1 int var_ele(int *a, int i,
2 int j, int n) {
3 return a[i*n+j];
4 }

Notice that the function int var_prod_ele(int *a, int *b, int i, int k,
int n);, which computes an entry of the matrix-matrix produce, may perform very different,

depending on its implementation.

Listing 75: Inefficient Multiply

1 // per iteration:
2 // - 3 multiplications
3 // - 4 additions
4 {
5 int j;
6 int result = 0;
7 for (j = 0; j < n; j++)
8 result += a[i*n+j] * b[j*n+k

];
9 return result;

10 }

Listing 76: Efficient Multiply

1 // per iteration:
2 // - 4 multiplications
3 // - 1 addition
4 {
5 int j;
6 int result = 0;
7 int iTn = i*n;
8 int jTnPk = k;
9 for (j = 0; j < n; j++) {

10 result += a[iTn+j] * b[jTnPk
];

11 jTnPk += n;
12 }
13 return result;
14 }
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10.5 Structures

For structures we allocate a contiguous region of memory for the members (of different types).

1 struct rec {
2 int i;
3 int a[3];
4 int *p;
5 }

Figure 22: struct layout in memory

The memory layout of structures must validate alignment. Consider that section to see why
this memory layout it valid and how other structures would be put in memory.

10.6 Alignment

Alignment describes the memory locations at which some data may reside in memory. In general
it describes that a data type which requires K bytes must have an address, which is a multiple of K
i.e., be K aligned. On early ARM, Alpha, ... this is required. On x86 this is treated depending on
the platform but generally advised.

The concept of alignment helps performance, because memory is accessed by aligned chunks
of 4 or 8 bytes. Alignment then simplifies providing data to the ALU and moving it within the
system. The compiler usually inserts gaps in structures to ensure correct alignment of fields.

For structures, each element’s alignment requirement must be satisfied. And the overall struc-
ture has alignment requirement K, where K is the largest alignment of any element. To guarantee
this for the fields to be in memory in the specified order, padding is added in memory.

1 struct S1 {
2 char c;
3 int i[2];
4 double v;
5 } *p;

x86-64 Layout (doubles have 8 byte alignment)

ia32 Layout (doubles have 4 byte alignment)

Figure 23: struct Alignment

A good C programmer knows about this and writes the structs in such an order that padding
is minimized. With structs, one may also specify bitfields. In those, one provides the size of each
field in bits. But do not use these for explicit memory layout! The compiler can pack multiple
fields into a single char/short/int/... We have no guarantee on the memory format! Padding, byte-
ordering, event-bit ordering, ... may be unexpected.
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Listing 77: Bitfields in C

1 struct BitFieldExample {
2 unsigned int field1 : 3; // 3 bits
3 unsigned int field2 : 4; // 4 bits
4 };

10.7 Unions

We have already discussed unions and know that we can only use one field at a time. Thus, it is
intuitive to understand that memory is allocated only according to the largest element.

1 union U1 {
2 char c;
3 int i[2];
4 double v;
5 } *up;

Figure 24: union memory layout

A common use case for unions is to access the bit pattern of some types. When casting
floats/doubles to ints, the C compiler/machine tries approximate conversion by rounding. But if
we want to access the bit pattern, we can store the data in a union and then read the int values.

Listing 78: Accessing Bit Pattern of Types through unions

1 union bit_float {
2 float f;
3 unsigned u;
4 };
5

6 float bit2float(unsigned u) {
7 union bit_float arg;
8 arg.u = u;
9 return arg.f;

10 }
11

12 unsigned float2bit(float f) {
13 union bit_float arg;
14 arg.f = f;
15 return arg.u;
16 }
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11 Unorthodox Control Flow

In high-level languages we are familiar with many common programming techniques/structures.
We work with OOP, threads, synchronization techniques, etc. While those are helpful in many sit-
uations, C unlocks many more possibilities and techniques. However, we have to implement them
mostly manually. Here we will consider unhinging normal control flow to unlock possibilities not
feasible in higher-level languages. Learning about such optimizations and learning such low-level
concepts is essential to reach even better optimizations.

11.1 setjmp() and longjmp()

setjmp and longjmp allow us to leave regular control flow. With setjmpwe can set a position
in code and, later, go to that specific position with setjmp in a way that resets all registers etc.
to the state that has been once we have been at that location in code the first time.

The way we save the information with setjmp about the location we jump to later mandates,
that we can only jump there in a way that the stack has not yet been deallocated. I.e., we can only
jump there from the function itself or subroutines.

11.1.1 setjmp

Calling setjmp(jmp_buf env) saves the current stack state (i.e., the position of the stack)
and the environment (register values) in the buffer env and returns 0.

Listing 79: setjmp in C

1 #include <setjmp.h>
2 int setjmp(jmp_buf env);

11.1.2 longjmp

setjmp(val) changes to control flow to jump to the point in code saved earlier with setjmp
(..).. However, once we resume execution at the setjump, it does not return 0 but instead it
returns val (if val is 0, it is turned into 1 - so one can’t return 0). For each setjmp(..). we can
call longjmp(..). only once.

As already mentioned in the introduction: By how this works under the hood, it is invalid to
call longjmp(..). if the function that called setjmp(..). already returned!

Listing 80: setjmp and longjmp Toy Example

1 #include <stdio.h>
2 #include <setjmp.h>
3

4 static jmp_buf buf;
5

6 void second(void) {
7 printf("second\n");
8 longjmp(buf,1);
9 }

10

11 void first(void) {
12 second();
13 printf("first\n"); // does not print
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14 }
15

16 int main() {
17 if ( ! setjmp(buf) ) {
18 first(); // when executed, setjmp returns 0
19 } else { // when longjmp jumps back, setjmp

returns 1
20 printf("main\n"); // prints
21 }
22 return 0;
23 }

11.2 implementing setjmp() and longjmp()

11.2.1 setjmp

When calling setjmp(env), we store (a) all callee saved registers, (b) the current state of the
stack (i.e., the stack pointer), and (c) the return address in the env buffer.

Listing 81: setjmp in Assembly

1 /* Copyright 2011-2012 Nicholas J. Kain, licensed under standard
MIT license */

2 setjmp:
3 mov %rbx,(%rdi). /* rdi is jmp_buf, move registers onto it */
4 mov %rbp,8(%rdi)
5 mov %r12,16(%rdi)
6 mov %r13,24(%rdi)
7 mov %r14,32(%rdi)
8 mov %r15,40(%rdi)
9 lea 8(%rsp),%rdx /* this is our rsp WITHOUT current ret addr

*/
10 mov %rdx,48(%rdi)
11 mov (%rsp),%rdx /* save return addr ptr for new rip */
12 mov %rdx,56(%rdi)
13 xor %eax,%eax /* always return 0 */
14 ret

11.2.2 longjmp

When longjmp is called, (a) all the previously stored registers are restored and (b) the stack
pointer is set to its value as it was in the function calling setjmp and, thus, deleting all stack
frames allocated after setjmp (assuming it did not return). Afterwards, longjmp returns to the
return address of the setjmp call, i.e., the next instruction after setjmp. Before that is done,
however, the return value is set according to the parameter to longjmp - assuming it is not 0.

Listing 82: longjmp in Assembly

1 /* Copyright 2011-2012 Nicholas J. Kain, licensed under standard
MIT license */

2 longjmp:
3 xor %eax,%eax
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4 cmp $1,%esi /* CF = val ? 0 : 1 */
5 adc %esi,%eax /* eax = val + !val */
6 mov (%rdi),%rbx /* rdi is the jmp_buf, restore regs from it

*/
7 mov 8(%rdi),%rbp
8 mov 16(%rdi),%r12
9 mov 24(%rdi),%r13

10 mov 32(%rdi),%r14
11 mov 40(%rdi),%r15
12 mov 48(%rdi),%rsp
13 jmp *56(%rdi) /* goto saved address without altering rsp

*/

The adc instructions sets the output to the sum of the destination operand, the source operand,
and the carry flat (set by the previous cmp instruction if %esi is 0).

11.3 Why Coroutines?

Now we begin to elaborate on the use of all of this. For what reason do we consider coroutines?
We will discuss this based on an example. But coroutines are the foundation of almost all concur-
rent programming. We intend to read a file, which as been compressed and then run a parser/lexer
on the decoded text to tokenize it.

The first stage to processing the compressed file is the decompressor, which is rather simple.
If a character is repeated in the text, the compressed version stores the number of repetitions and
the character.

Listing 83: Decompressor Code

1 while (1) {
2 c = getchar();
3 if (c == EOF)
4 break;
5 if (c == 0xFF) {
6 len = getchar();
7 c = getchar();
8 while (len--)
9 emit(c);

10 } else
11 emit(c);
12 }
13 emit(EOF);

This reads a character from the file through getchar() and then produces output for this using
emit(...).

The lexer distinguishes between alphabetic characters and everything else. It outputs words
as tokens and each other symbol as a separate punctuation token. It reads characters from the
decoded text using getchar() and then outputs tokens using got_token(...) after having
constructed them using add_to_token(...).

Listing 84: Parser/Lexer Code
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1 while (1) {
2 c = getchar();
3 if (c == EOF)
4 break;
5 if (isalpha(c)) {
6 do {
7 add_to_token(c);
8 c = getchar();
9 } while (isalpha(c));

10 got_token(WORD);
11 }
12 add_to_token(c);
13 got_token(PUNCT);
14 }

Notice that we can’t simply stick those simple two methods together. The decoder calls a
method to provide a new symbol. Similarly, the lexer calls a method to get a new token. We see
two immediate solutions:

• We first decode the entire file and then run the lexer on the complete text. This is undesir-
able, because we want to process the file in real time. But this approach would only yield
tokenized output once the entire file had been processed by the decoder (which might take
a while).

• We make one of the two methods callable. This involves rewriting at least one of the two
methods - work we don’t want to do. Such implementations would use static variables.
But that limits us to processing one file unless we have multiple instanciations.

Listing 85: Rewritten Compressor

1 int decompressor(void) {
2 static int repchar;
3 static int replen;
4 if (replen > 0) {
5 replen--;
6 return repchar;
7 }
8 c = getchar();
9 if (c == EOF)

10 return EOF;
11 if (c == 0xFF) {
12 replen = getchar();
13 repchar = getchar();
14 replen--;
15 return repchar;
16 } else
17 return c;
18 }

Listing 86: Rewritten Lexer

1 void lexer(int c) {
2 static enum {
3 START, IN_WORD
4 } state;
5 switch (state) {
6 case IN_WORD:
7 if (isalpha(c)) {
8 add_to_token(c);
9 return;

10 }
11 got_token(WORD);
12 state = START;
13 /* fall through */
14 case START:
15 add_to_token(c);
16 if (isalpha(c))
17 state = IN_WORD;
18 else
19 got_token(PUNCT);
20 break;
21 }
22 }
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What we would like instead is that the parser calls the lexer when it has a new character and
then the lexer hands execution back to the parser when it requires new characters. This concept is
implemented by continuations.

The decompressor runs until it has a character to emit. It then saves its state (stack, variables,
etc.) and calls into the parser. The parser continues where it previously left off. It processes the
new character and runs until it needs a new character. Once that is the case, it calls back to the
decompressor. This then goes back and forward until the entire file is processed properly.

11.4 Implementing Coroutines

This is a very minimal implementation for illustratory purposes. It has to be used like this:

1. Call co_init();

2. Create the coroutines, which should switch between each other with co_new(...);

3. Switch to the first coroutine with co_switchto(...);

4. Once one of the coroutines terminates, we will continue execution here.

1 typedef void (co_start_fn)(void *);
2 static struct coroutine *cur_co;
3 static struct coroutine *main_co;
4

5 struct coroutine
6 {
7 void *stack; // call stack of coroutine
8 jmp_buf env; // the saved context
9 co_start_fn *start; // function to call

10 void *arg; // argument to the function
11 };
12

13 struct coroutine *co_new(co_start_fn *start, void *ctxt)
14 {
15 struct coroutine *co = (struct coroutine *)calloc(1, sizeof(

struct coroutine));
16 co->stack = calloc(1, CORO_STACK_SIZE + 16);
17 co->start = start;
18 co->arg = ctxt;
19

20 setjmp(co->env);
21 // Those two lines are a machine-depenent hack to set the %rsp

and %rip.
22 // We do this so that we jump to the desired location and not

back here.
23 co->env[0].__jmpbuf[6] = ((uint64_t)(co->stack) +

CORO_STACK_SIZE);
24 co->env[0].__jmpbuf[7] = ((uint64_t)(start_cl));
25

26 return co;
27 }
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28

29 static void start_cl(void)
30 {
31 (cur_co->start)(cur_co->arg);
32 co_switchto(main_co);
33 printf("Error: returned from coroutine start closure.\n");
34 exit(-1);
35 }
36

37 extern void co_free(struct coroutine *self);
38

39 // switching coroutines
40 void co_switchto(struct coroutine *next)
41 {
42 if (setjmp(cur_co->env) == 0) {
43 cur_co = next;
44 longjmp(cur_co->env, 1);
45 }
46 }
47

48 void co_init()
49 {
50 main_co = (struct coroutine *)calloc(1, sizeof(struct

coroutine));
51 cur_co = main_co;
52 co_switchto(main_co);
53 }

11.4.1 Coroutines in Decoder, Lexer Example

1 static char param;
2 struct coroutine *lx_co;
3 struct coroutine *dc_co;
4

5 #define DEC_PUTCHAR(c) do { param = c; co_switchto(lx_co); }
while(0)

6 void decompress(void *ctxt)
7 {
8 int c;
9 int len;

10 printf("Started decompressor\n");
11 while ((c=getchar()) != EOF) {
12 if (c == ESCAPE) {
13 len = getchar();
14 c = getchar();
15 while (len--) {
16 DEC_PUTCHAR(c);
17 }
18 } else {
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19 DEC_PUTCHAR(c);
20 }
21 }
22 }
23

24 #define LEX_GETCHAR() ( co_switchto(dc_co), param )
25 void lexer(void *ctxt)
26 {
27 int c;
28 while ( (c = LEX_GETCHAR() ) != EOF) {
29 if (isalpha(c)) {
30 do {
31 add_to_token(c);
32 c = LEX_GETCHAR();
33 } while (isalpha(c));
34 got_token(WORD);
35 } else {
36 add_to_token(c);
37 got_token(PUNCT);
38 }
39 }
40 }
41

42 int main(int argc, char *argv[])
43 {
44 co_init();
45

46 // Create the decompressor and lexer coroutines
47 dc_co = co_new( decompress, NULL );
48 lx_co = co_new( lexer, NULL );
49

50 // Start by switching to the lexer
51 co_switchto( lx_co );
52

53 // When one of them returns or switches back to main, we’re
done.

54 return 0;
55 }

To avoid passing the char with a global variable, one could modify co_switchto() to
enable argument passing between coroutines:

1 void *co_switchto(struct coroutine *next, void *arg) {
2 if (setjmp(cur_co->env) == 0) {
3 cur_co = next;
4 cur_co->arg = arg;
5 longjmp(cur_co->env, 1);
6 }
7 return cur_co->arg;
8 }
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11.5 Adding a Scheduler: ”Not Quite Threads”

Coroutines enable a generalized control flow passing. It is known under many different names:
Lightweight threads, Protothreads, Fibers, Cooperative multitasking, Goroutines, ...

So far, however, we are missing:

• true concurrency or parallelism as everything is executed on a single thread

• this is a directed context switch, so we have no scheduling

• no blocking/sleep+wakeup functionality

• no preemption (cannot pause a coroutines unless it hands of execution itself)

To create some approximation of threads, we now add a scheduler. This is used like:

1. Implement your threads as functions void *threadName(void *arg).

2. Call nathread_init().

3. Call nathread_create(&nathreads[i], threadName, (void *)param) for
each thread with a unique i.

4. Call nathread_schedule().

1 // Maximum number of nathreads we can create
2 #define MAX_NATHREADS 20
3

4 // State of each nathread - extend this for blocking/asleep/etc.
5 enum status { NAT_FREE = 0, NAT_RUNNABLE, NAT_EXITED };
6

7 // The nathread table itself
8 struct nat {
9 struct coroutine *co;

10 void *(*start)(void *);
11 void *arg;
12 enum status state;
13 } nathreads[MAX_NATHREADS] = {};
14

15 // What’s currently running?
16 static nathread_t cur_nathread = NULL;
17

18 typedef struct nat *nathread_t;
19

20 // create a not-a-thread
21 int nathread_create(nathread_t *nt, void *(*start)(void *), void

*arg) {
22 // Look for a free nathread in the array
23 for(int i=0; i < MAX_NATHREADS; i++) {
24 *nt = &nathreads[i];
25 if ((*nt)->state == NAT_FREE) {
26 // Initialize the nathread
27 (*nt)->start = start;
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28 (*nt)->arg = arg;
29 (*nt)->co = co_new(wrapper, NULL);
30 (*nt)->state = NAT_RUNNABLE;
31 return 0;
32 }
33 }
34 return EAGAIN;
35 }
36

37 static void wrapper(void *arg) {
38 nathread_t nt = cur_nathread;
39 (nt->start)(nt->arg);
40 nathread_exit(nt->co->arg);
41 }
42

43 // terminate this thread with a return value
44 void nathread_exit(void *retval) {
45 cur_nathread->state = NAT_EXITED;
46 nathread_yield();
47 }
48

49 // switch to another nathread (not preemtion!)
50 void nathread_yield(void) {
51 co_switchto( main_co, NULL );
52 }
53

54 // initialize the package
55 void nathread_init(void) {
56 co_init();
57 }
58

59 // scheduler, run until nothing is runnable any more
60 void nathread_schedule(void) {
61 int t = 0;
62 do {
63 // Look for a runnable nathread
64 cur_nathread = NULL;
65 for(int i=0; i < MAX_NATHREADS; i++) {
66 t = (t + 1) % MAX_NATHREADS;
67 if ( nathreads[t].state == NAT_RUNNABLE) {
68 // Switch to this runnable nathread.
69 cur_nathread = &nathreads[t];
70 co_switchto( cur_nathread->co, NULL );
71 break;
72 }
73 }
74 } while (cur_nathread != NULL);
75 }
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1 #include <stdio.h>
2 #include "nt.h"
3

4 /*
5 * Very simple not-a-thread demo: just count to 3!
6 */
7

8 static void *my_thread(void *arg)
9 {

10 long index = (long)arg;
11 for(int count=0; count < 3; count++) {
12 printf("Not-a-thread %ld: count %d\n", index, count);
13 nathread_yield();
14 }
15 return NULL;
16 }
17

18 #define NUM_NATHREADS 3
19

20 int main(int argc, char *argv[])
21 {
22 nathread_t nathreads[ NUM_NATHREADS ];
23

24 // Create our not-a-threads
25 nathread_init();
26

27 for( int i=0; i<NUM_NATHREADS; i++) {
28 nathread_create( &nathreads[i], my_thread, (void *)(long)i )

;
29 }
30

31 // Enter the scheduler
32 nathread_schedule();
33

34 // Back here when nothing left to run
35 return 0;
36 }

11.5.1 What is still Missing for Threads?

Although this is a pretty complete setup, it is still missing a few key aspects to be considered to
implement the concept of threads.

• Join: Waiting for a nathread to terminate and get its return value.

• Blocking/sleep and wakeup: We would need to add a new sate NAT_WAITING. A signal
would then handle to change the state back to NAT_RUNNABLE.

• Locks, condition variables: This is a trivial extension to sleep/wakeup.
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• Parallelism (multiple cores): This is a bit tricky. We would need to synchronize the sched-
uler queue. For instance with a spinlock or atomics? Also, we would have to make changes
to sleep/wakeup and store the state of thread per-core. For each core we would need to know
the current thread.

• Preemption: So far, each coroutines/not-a-thread has to call yield(...), which is called
cooperative multitasking. Instead, we want a mechanism to asynchronously switch corou-
tines. That may be done with processor exception, which we will consider later.

All in all, the details of everything discussed in this section of unorthodox control flow proably
isn’ very relevant. Well, setjmp and longjmp should be understand. But the rest probably only
is to illustrate what those (rather simple but still complex) functions enable.
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12 Linking

We have already learned about the C toolchain/workflow. When we typically just say compiling,
in reality multiple steps happen: preprocessing, compilation, assembling, and linking. We have
already discussed preprocessing (# instructions/macros) and compilation of C functions and data
structures. Assembling simply corresponds to converting the assembly into its binary equivalent.
After assembling, we have an .o object file, but that is not executable yet. We will look at this .o
file in depth here and what we have to do to make it executable.

At its core, (static) linking combines different compiled compilation units into one executable.
This has to be done, because the different compilation units may depend on each other. For
instance, one specifies an interface, which the other library knows exists (as it includes the header
files), but the actual implementation is somewhere else.

Consider this example: We have two .c files, where main.c references a function in swap.c
. Pre-processing, compilation, and assembling happens independently for each .c file/compilation
unit. Thus, the assembled .o file of main.c can not contain a proper reference for the call to
swap() as the compiler did not have any information about its location in memory.

Thus, we call those .o files relocatable object files. Only by using a linker, we can resolve those
references and create an executable object file, which contains all necessary code and references.

Dynamic linking is still different. But the intuition for that is better built after static linking
has been fully understood.

Figure 25: Static Linking Conceptually

Linking has many practical advantages:

• Without linking, we would be required to have everything in one compilation unit from the
beginning.

• Separating compilation like this enables us to build libraries of common functionality which
must not be built every time but only included through linking. But even without libraries,
this increases efficiency, because when changing the content of one file, we only need to
recompile that file and relink instead of recompiling the entire source code.

• Linking saves a lot of space. This will become apparent when we understand dynamic
linking later on. We only include code for the functions which are actually unique to our
program.
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Notice that each .c file is considered separately for compilation. This means that we don’t
have any cross-file compilation optimizations. We accept this because we can rarely increase the
performance by compiling across multiple files.

However, one thing that is sometimes done is called inlining. Inlining a function means to
insert its code directly into the caller to avoid the calling overhead. But there are engineering con-
cerns: Changes to the source but not modify the inlined function. This is prevented by including
the inlined code in a header file which we include so that recompilation automatically happens.
Generally, inlining is only helpful in certain cases (usually often called from one position such as
loops), where the inlined function is small.

12.1 Linking in 2 Steps

12.1.1 Symbol Resolution

Every program defines and references symbols, which correspond to variables and functions.
Examples:

• void swap(){...} defines the symbol swap

• swap(); references the symbol swap

• int *xp = &x; defines the symbol xp and references the symbol x

The compiler worked with the user-defined names for variables and functions but the assem-
bler then works out the different symbols and puts all symbols into a symbol table. There is one
entry for each symbol that is declared and/or referenced. The symbol table is an array of structs.
Each entry/struct contains:

• symbol name

• symbol type

• symbol size

• symbol location (if known)

• (meta-information whether the symbol is static/its visibility etc.)

So this symbol table is created during assembling, i.e., even before the linker is involved. Dur-
ing its first step, the linker then looks at the symbol tables of multiple relocatable object files and
resolves dependencies. It associates each symbol (reference) with exactly one symbol definition.

12.1.2 Relocation

After having figured out one definition for each referenced symbol, i.e., one large symbol table
for each definition, relocation corresponds to merging the separate code and data sections of the
different relocatable object file into a single executable file.

This also involves using the definitions figured out during symbol resolution to relocate sym-
bols from their relative locations in the relocatable .o file to their final absolute memory locations
in the executables.

Finally, all references to any symbols are updated according to their now defined position in
the executable file. The memory layout chosen by the linker for this executable file has an impact
on performance. Different layouts may result in different cache performance/misses.
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12.2 Object Files

There are three types of object files.

• relocatable object file (.o file)

Each .o file is created from exactly one .c file/compilation unit through compilation and
assembling. It contains code and data in a form that can be combined with other relocatable
object files.

• executable object file

This contains code and data in a form that can be copied directly into memory and then
executed. This requires that linking has been performed on the .o/relocatable object file.
Also, executing an executable object file may required dynamic linking.

• sharable object file (.so file, DDLs on Windows)

This is a special type of relocatable object files that can be loaded into memory and linked
dynamically, at either load time or run-time. It is not an executable itself but a compiled
library instead.

All those different types have had different formats depending on the specific machine. Today,
we use ELF (Executable and Linkable Format) as the standard binary format for object files. This
format was originally proposed by AT&T System V Unix and later adopted by basically everyone
else.

ELF header
Segment header table

(required for executables)
. text section

. rodata section
. data section
.bss section

. symtab section
.rel.txt section

.rel.data section
. debug section

Section header table

Figure 26: Basic Layout of ELF Binary

• ELF header

word size, byte ordering (big/little endianess), file type (‘.o‘, ‘.so‘, ‘exec‘), machine
type, ...

• segment header table

page size, virtual address memory segments (sections), segment sizes

• ‘.text‘ sectoin

code

• ‘.rodata‘ section

read only data: jump tables, literals, ...
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• ‘.data‘ section

initialized global variables

• ‘.bss‘ section

uninitialized global variables

this has a section header but occupies not space in the object file

still, memory addresses are already designated to the entries of this section

• ‘.symtab‘ section

this is the symbol table

it stores the names, locations, etc. of procedures and (static) variables

• ‘.rel.text‘ section

relocation information for the ‘.text‘ section

specifically:

- addresses of instructions that will need to be modified in the executable

- instructions for modifying those instructions

• ‘.rel.data‘ section

relocation information for the ‘.data‘ section

specifically:

addresses of pointer data that will need to be modified in merged executable

• ‘.debug‘ section

info for symbolic debugging

enables getting the line number of the original ‘.c‘ file when sth. goes wrong for exam-
ple

• section header table

offsets and sizes of each section

this comes last, because it was historically easies to compute this table in the end and
append it then

12.3 Linker Symbols

The linker distinguishes between three types of linker symbols.

• global symbols: symbols defined by module m that can be referenced by other modules (e.g.,
‘non-static‘ C functions and ‘non-static‘ global variables)

• external symbols: global symbols that are referenced by module m but defined by some other
module

• local symbols: symbols that are defined and referenced exclusively by module m such as
static functions and attributes. (local linker symbols are NOT local program variables!)
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12.4 Example

Listing 87: main.c.

1 int buf[2] = {1,2};
2

3 int main() {
4 swap();
5 return 0;
6 }

Figure 27: Disassembly of main.c

Listing 88: swap.c

1 extern int buf[];
2

3 static int *bufp0 = &buf[0];
4 static int *bufp1;
5

6 void swap() {
7 int temp;
8 bufp1 = &buf[1];
9 temp = *bufp0;

10 *bufp0 = *bufp1;
11 *bufp1 = temp;
12 }

Figure 28: Disassembly of swap.c
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Figure 29: Disassembly of Relocated File

12.5 Strong and Weak Symbols

When considering symbols, the linker behaves differently depending of whether symbols are con-
sidered strong or weak. By default, strong symbols are procedures/functions and initialized glob-
als. Weak symbols are uninitialized globals if we set -fcommon and strong otherwise.

-fcommon has been the default even a few years ago. But today, the default is -fno-
common, which means that also uninitialized globals are strong symbols.

Then linking, the linker proceeds as follows with those two symbol types:

1. Multiple strong symbols are NOT allowed (each item can be defined only once).

2. Given a strong symbol and multiple weak symbols, the strong symbol is chosen as the
definition and references to the weak symbols resolve to the strong symbol.

3. If there are (only) multiple weak symbols, the linker picks an arbitrary one.

One challenge is that the symbols might not even refer to the same type so that writing to the
same symbol may lead to writing to 64 bytes (if considered double) even if defined as 32 bit int.
This leads to unintended behavior without a guaranteed compiler/linker warning.

Variables/symboles declared with extern always rely on a definition in another file. If such
a definition is not provided, we get an error. Usually, extern symbols have a strong version
somewhere.
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We rarely make a symbol explicitly weak. By by default everything is strong. However, we
can use a pragma to declare a symbol as weak: __attribute__((weak));.

Avoid ambiguities and difficulties by never letting such cases arise. Use static if possible
and either initialize a global variable or use extern.

12.6 Static Libraries

Now we consider how to package and include functions commonly used by programmers such as
math, I/O, memory management (malloc, ...), string manipulation, ... With the system so far, we
have two options: Either put all functions into a single source file which is space and time ineffi-
cient (big objects file linked of which only a fraction is needed) or put each function in a separate
source file which is efficient but burdensome on the programmer (must explicitly link/include all
files).

The solution to this are static libraries. Those are .a archive files, which concatenate related
relocatable object files into a single file with an index (called an archive). An enhanced linker now
tries to resolve all references by considering the provided files. But if there are still unresolved
references in the end, the linker looks for those in specified (or default) libraries. If an archive
member file resolves a reference, it links that into the file.

An archive can be created from .o files using an archiver (ar on linux). Notice that each
function from such as printf etc. must still be given through its own .c file so that it gets its
own .o file. The archiver allows incremental updates and recompiles functions that changed and
replaces their .o file in the archive.

Commonly-used libraries are libc.a (the C standard library), which as over 900 object file
in 8 MB memory for I/O, memory allocation, signal handling, string allocation, data and time,
random numbers, integer math, ... Also, libm.a (the C math library) is usually a default library.
It has 226 object files and is 1 MB in size. It provides floating point math functionality such as
sin, cos, tan, log, exp, sqrt, ...

When resolving dependencies, the linker proceeds like this:

1. Scan .o files and .a files in the command line order.

2. During the scan, keep a list of the current unresolved references.

3. As each new .o or .a file, is encountered, try to resolve each unresolved reference in the list
against the symbols defined in that file.

4. If any entries in the unresolved list at end of scan, then error.

This means that the command line order matters. The default libraries should always come later
if we want to overwrite them with custom implementations. In practice this means that libraries
should be put at the end of the command line. In modern linkers, we may also specify batches for
the processing order.

12.7 Shared Libraries

Static libraries have some disadvantages:

• duplication in the stored executables

• duplication in the running executables

• (minor) bug fixes of system libraries require each application to explicitly relink
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Shared libraries address those issues. We consider executable object files, which have not all
symbols resolved. Instead, at load-/run-time, specific object files (.so on linux, dynamic link
libraries (DLLs) in windows) are linked into an application dynamically.

Dynamic linking of shared libraries can happen in two ways:

• load-time linking

This is the common case for Linux and handled automatically by the dynamic linker (ld-
linux.so). The standard C library (libc.so) is dynamically linked, for instance.

• run-time linking

In Unix, this is done by calls to the dlopen() interface

Figure 30: Dynamic Linking at Load Time

Listing 89: Dynamic Linkin gat Run Time

1 #include <stdio.h>
2 #include <dlfcn.h>
3 int x[2] = {1,2};
4 int y[2] = {3,4};
5 int z[2];
6

7 int main(int argc, char *argv[]) {
8 void *handle;
9 void (*addvec)(int *, int *, int *, int);

10 char *error;
11

12 /* dynamically load the shared lib that contains addvec() */
13 handle = dlopen("./libvector.so", RTLD_LAZY);
14 if (!handle) {
15 fprintf(stderr, "%s\n", dlerror());
16 exit(1);
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17 }
18 /* get a pointer to the addvec() function we just loaded */
19 addvec = dlsym(handle, "addvec");
20 if ((error = dlerror()) != NULL ){
21 fprintf(stderr, "%s\n", error);
22 exit(1);
23 }
24

25 /* Now we can call addvec() it just like any other function */
26 addvec(x,y,z,2);
27 printf("z = [%d %d] \n", z[0], z[1]);
28

29 /* unload the shared library */
30 if (dlclose(handle) < 0 ) {
31 fprintf(stderr, "%s\n", dlerror());
32 exit(1);
33 }
34 return 0;
35 }

12.8 Library Inter-Positioning

One technique is called library inter-positioning. It allows programmers to intercept calls to ar-
bitrary functions by providing that function themselves and then linking the library after some
processing is done beforehand. Inter-positioning can occur at compile-time, link-time or load-
/run-time.

We use inter-positioning for several reasons:

• security: confinement (sandboxing) and behind the scenes encryption

• monitoring and profiling: count number of calls to functions, characterize call sizes and
arguments to functions, malloc tracing

Listing 90: Intercepting malloc to Count Calls

1 void *malloc(size_t size){
2 static void *(*fp)(size_t) = 0;
3 void *mp;
4 char *errorstr;
5

6 /* Get a pointer to the real malloc() */
7 if (!fp) {
8 fp = dlsym(RTLD_NEXT, "malloc");
9 if ((errorstr = dlerror()) != NULL) {

10 fprintf(stderr, "%s(): %s\n", fname, errorstr);
11 exit(1);
12 }
13 }
14

15 /* Call the real malloc function */
16 mp = fp(size);
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17

18 mem_used += size;
19

20 return mp;
21 }
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13 Code Vulnerabilities

13.1 Worms and Viruses

First, we can distinguish between worms and viruses. A worm is a program than can run by itself
and can propagate a fully working version fo itself to other computers. A Virus is a program that
adds itself to other programs and cannot run independently. Both types can cause wide destruction
of data and computer networks.

The term worm was coined by early cyberpunk/sci-fi novels. And initial worms weren’t nec-
essarily malicious. They were used to gather status data or meta-information.

Probably the first internet worm was designed by Robert Morris in 1988. While convicted,
he is now a distinguished professor at MIT and had no harmful intentions. His goal was to count
the number of hosts connected to the internet. The following subsections are just some of the
vulnerabilities his worm exploited.

13.2 Stack Overflow Bugs

Stack Overflow Bugs as considered here are a special type of overflow bugs. Those must not
always occur on the stack. If they occur on the heap, we call them heap overflow bugs, for
instance.

The gets() function is a vulnerable function.

Listing 91: Vulnerable gets() Function

1 char *gets(char *dest)
2 {
3 int c = getchar();
4 char *p = dest;
5 while (c != EOF && c != ’\n’) {
6 *p++ = c;
7 c = getchar();
8 }
9 *p = ’\0’;

10 return dest;
11 }

This does not limit the number of characters read and, hence, may write read characters beyond
the allocated memory section provided with the pointer ‘char *dest‘. If this pointer is located on
the stack, we can overwrite other’s stack frames and also the return address if we are a function
ourselves and, thus, redirect to malicious code. Other Unix functions such as strcpy, scanf,
fscanf, and sscanf (when using %s) are analogously vulnerable.
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Listing 92: Example Misuse of gets

1 int main() {
2 printf("Type a string:");
3 echo();
4 return 0;
5 }
6

7 void echo() {
8 char buf[4]; /* Way too

small! */
9 gets(buf);

10 puts(buf);
11 }

Listing 93: Compiled Version

1 00000000004005bd <echo>:
2 sub $0x18,%rsp
3 mov %rsp,%rdi
4 callq 4004c0 <gets@plt>
5 mov %rsp,%rdi
6 callq 400480 <puts@plt>
7 add $0x18,%rsp
8 retq
9

10 00000000004005d6 <main>:
11 sub $0x8,%rsp
12 mov $0x400684,%edi
13 mov $0x0,%eax
14 callq 400490 <printf@plt>
15 mov $0x0,%eax
16 callq 4005bd <echo>
17 mov $0x0,%eax
18 add $0x8,%rsp
19 retq

Figure 31: Buffer Overflow Stack & Memory Layout

With 123 as input everything is fine, as with 1234567 as input, although we already write
beyond the bounds of the buffer buf. That is as the compiler inserted some padding in memory.
When we input 123456789012345678901234, we get a segmentation fault.

Nevertheless, the compiler wants to help us and may detect some of those vulnerabilities
and print warning or may refuse to compile. We use the gcc flags as in this command gcc
-D_FORTIFY_SOURCE=0 -fno-stack-protector -0 -S bufdemo to turn of those
protections.

A more sophisticated approach may first write some exploit code, then some padding, and use
the return address to jump to the just written exploit code. Notice that this only works if security
mechanism, which prevent from executing instructions from the stack, are not active.

Furthermore, one usually wants to know the source code to plan the memory layout, the endi-
anness of the target machine, as well as its architecture. Otherwise, this attack is a shot in the dark
and one has to do much try and error.

Generally, such buffer overflow bugs allow remote machines to execute arbitrary code on vic-
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tim machines!

But because we only discussed stack overflow bugs, this doesn’t mean that heap overflow bugs
aren’t fatal! They can mess with (segregated) linked list used by malloc to redirect the execution.

13.3 Buffer Overflow Bugs

Here, we consider the SUN XDR library as an example to see that overflows on the heap and not
only on the stack are destructive. While we don’t store return addresses on the heap, we can mess
with the dynamic memory allocators meta-information and change the (segregated) linked-list
used for memory management.

More specifically: There are function pointers on the heap. We set free bits and prev/next
pointers in a memory chunk to hijack control flow, when the memory allocator coalesces ’free’
blocks

Listing 94: Vulnerable Function of the XDR Library

1 void* copy_elements(void *ele_src[], int ele_cnt, size_t
ele_size) {

2 void *result = malloc(ele_cnt * ele_size);
3 if (result == NULL)
4 /* malloc failed */
5 return NULL;
6 void *next = result;
7 int i;
8 for (i = 0; i < ele_cnt; i++) {
9 /* Copy object i to destination */

10 memcpy(next, ele_src[i], ele_size);
11 /* Move pointer to next memory region */
12 next += ele_size;
13 }
14 return result;
15 }

The issue arises from the computation ele_cnt * ele_size in malloc. On a 32-bit ma-
chine, we can set ele cnt = 220 + 1 and ele size = 4096 = 212 so that the multiplication is
just ele_size. Thus, way to little memory is allocated and we can write beyond the allocated
memory location when copying the data continuously.

13.4 Stopping Overrung Bugs

13.4.1 Avoiding Overflow Vulnerability

Instead of gets() or similar functions, we use library routines that limit the string lengths. Use
fgets instead of getsUse strncpy instead of strcpyUse %ns, where n is a suitable integer
in scanf or similar.

13.4.2 System-Level Protections

• The compiler can insert checks on functions.

It may add some arbitrary values in code and check during runtime whether they have
been modified, i.e., whether a buffer overflow may have occurred.

96



• Randomized stack offsets.

During execution, a random offset can be added to the stack. Then, it is more difficult
for attackers to predict memory locations of different segments and successfully redirect
control flow. This is done by default in moern machines.

• Nonexecutable code segments

Besides flags declaring sections as ’read-only’ or ’writeable’, we may also change the
permission ’execute’ so that the CPU just won’t execute code, which is located on the stack,
so that no malicious code can be injected.

13.5 Attack Method: Return Oriented Programming

This is an approach of attackers to deal with limitations on executing dynamically inserted code
on the stack. Instead, the addresses are overwritten so that the control flow jumps to and executes
cherry-picked machine instruction sequences, which are already present in the application process
memory. Those ’useful’ instruction sequences are called ’gadgets’.
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14 Floating Point Numbers

14.1 Representing Floating-Point Numbers

14.1.1 Fractional Binary Numbers

We start by considering fractional binary numbers in general. They work very similarly to frac-
tional decimal numbers, just using 2 instead of 10 as the base. Bits to the right of the binary point
represent fractional powers of 2. Thus: Division by 2 corresponds to shifting right. Multiplication
with 2 corresponds to shifting left. And there are fractions, which cannot be exactly represented
in this notation. Only numbers of the form x

2k can be exactly represented. Numbers which can not
precisely expressed are for example:

• 1
3 is 0.0101010101[01] . . .2

• 1
5 is 0.001100110011[0011] . . .2

• 1
10 is 0.0001100110011[0011] . . .2

Figure 32: Fractional Binary Numbers

i󰁛

k=−j

bk · 2k

14.1.2 IEEE Floating Point

This is a standard that was established in 1985 to have uniform floating point arithmetics. Before,
many custom formats existed. Luckily, all major manufacturers were part of the commission so
that the standard is adopted by all major CPUs. The definition was driven by numerical concerns.
Numerical scientists wanted a nice standard for rounding, overflow, underflow, ... That came at
the tradeoff of being rather difficult to implement in hardware.

The most general form of floating points looks numerically like

(−1)s.M.2E

where s, M , and E are the parameters to define a number.
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• s: sign

• M (significant): fractional value, normally in the range [1.0, 2.0) (normalized but in special
case also [0.0, 1.0)).

• E: exponent, weights value by a power of two

Figure 33: IEEE Floating Point Encoding

• the MSB is the sign bit s

• exp encodes E but is not E

• frac encodes M but is not M

The details of the encoding scheme will be part of the next subsection.

14.2 Types of IEEE Floating-Point Numbers

If we designate different amounts of bits to ‘exp‘ and ‘frac‘, we get different precision for the rep-
resentable numbers. Thus, the standard defines two original precisions: IEEE 754 Single Precision
(32 bits) and IEEE 754 Double Precision (64 bits).

precision significant bits exponent bits total
half 11 5 16

single 24 8 32
double 53 11 64

quadruple 113 15 128
octuple 237 19 256

Google bfloat16 7 8 16
Nvidia TensorFloat 10 8 19

AMD fp24 17 7 24

Figure 34: Floating Point Precisions (sign bit part of significant bits)

In C99, single precision is guaranteed with float and double precision is guaranteed with
double. long double etc. usually correspond to what we expect such as quadruple precision
but it is implementation defined and not guaranteed by the standard.

Furthermore, we have seen conversion of ‘int‘, ‘char‘, ... as just reinterpreting the bit repre-
sentation. Here, we instead actually change the bit representation when casting/converting.

• double/float→int

This truncates the fractional part (like rounding toward zero). When the result is out of
range or NaN, this is implementation defined but generally TMin.

• int→double

This is an exact conversion as an int has ≤ 53 bits

• int→float

This will round according to rounding mode. We will see (default) rounding later.
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14.2.1 Normalized Values

This is the case if exp ∕=000...0 and exp ∕=111...1.

• exponent

This is encoded as a biased value: E = exp - bias, where exp is the unsigned
value in hardware. bias= 2e−1 − 1, where e is the number of exponent bits. This leads to
roughly half of the exponents being above and half below zero.

single precision: 127 (-126...127)

double precision: 1023 (-1022...1023)

• significant

Because values of normalized values are in [1.0, 2.0), we have 1.xxx...x. Thus, the
leading 1 is implied and mustn’t be stored.

Figure 35: Normalized Encoding Example

14.2.2 Denormalized Values

This is the case if exp=000...0.

• exponent

The bias is computed as for normalized values. Then, the exponent is E = 1-bias.
So we add 1 to get the same exponent as in the case where the exponent is 1.

• significant

With denormalized values, we have values in [0.0,1.0). So, we implicitly encode
with a leading 0.

Thus, with frac = 000...0 we encode zero. (One, for each sign.)

14.2.3 Special Values

This is the case if exp = 111...1.
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• frac = 000...0

This represents ∞ and is assigned of an operation overflows. Notice that we still have
the sign bit and, thus, have positive and negative infinity.

• frac∕=000...0
This corresponds to ‘NaN‘ (Not-a-Number). This is assigned whenever a numeric value

can’t be assigned, such as sqrt(-1), ∞ − ∞, ∞ ∗ 0.

14.2.4 Interesting Numbers & Properties

description exp frac numerical value
Zero 00 . . . 00 00 . . . 00 0.0
Smallest pos. denorm.
- Single ≈ 1.4 × 10−45

- Double ≈ 4.9 × 10−324
00 . . . 00 00 . . . 01 2−{23,52} × 2−{126,1022}

Largest denormalized
- Single ≈ 1.18 × 10−38

- Double ≈ 2.2 × 10−308
00 . . . 00 11 . . . 11 (1.0 − ε) × 2−{126,1022}

Smallest pos. normalized
- Just larger than largest denormalized

00 . . . 01 00 . . . 00 2−{126,1022}

One 01 . . . 11 00 . . . 00 1.0
Largest normalized
- Single ≈ 3.4 × 1038

- Double ≈ 1.8 × 10308
11 . . . 10 11...11 (2.0 − ε) × 2{127,1023}

Figure 36: Interesting Floating Point Numbers

We can almost use unsigned integer comparison to compare floating point numbers. We must
only consider to first compare the sign bit, the special values NaN and ∞ and −∞ as well as that
−0 = 0.

14.3 Floating-Point Spacing

Spacing decreases with distance for normliazed values so that the relative errors stays roughly the
same. But there are always blocks according to the size of frac which have the same spacing.
The denormalized values have the same spacing as the smallest normalized values to fill the entire
gap to 0.

Figure 37: Floating Point Spacing

14.4 Floating-Point Rounding

The basic idea is to define floating point operations is that we would first compute the exact result
and then make it fit into the desired precision. If the result is too large, we may get an overflow.
And we likely have to round to fit the frac into the given number of bits.
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So that we can deal with operations, let’s understand rounding first. We have four rounding
modes of which nearest even is the default one.

CHF 1.40 CHF 1.60 CHF 1.50 CHF 2.50 CHF -1.50
Towards zero 1 1 1 2 -1
Round down (−∞) 1 1 1 2 -2
Round up (+∞) 2 2 2 3 -1
Nearest Even (default) 1 2 2 2 -2

Figure 38: Rounding Modes Illustration

Nearest Even/”round-to-even” is the default rounding mode for IEEE FP. It means we do
’normal’ rounding to the closest number unless we’re EXACTLY in between two. Then, we round
to the even one. Compared to the other modes, this is the only which is statistically unbiased. All
others consistently over-/under-estimate.

Value Binary Rounded Action Result
23/32 10.000112 10.002 < 1/2 : down 2
23/16 10.001102 10.012 > 1/2 : up 21/4
27/8 10.111002 11.002 = 1/2 : up 3
25/8 10.101002 10.102 = 1/2 : down 21/2

Figure 39: Rounding Examples

To consider rounding further, we assume that we are given a real number and want to create a
floating pointer from it. We assume that exp has 4 bits and that frac has 3 bits.

14.4.1 Normalize to Have Leading 1

This will introduce the exponent. Specifically, we start with exponent 0 and decrement the expo-
nent as we shift left/increment as we shift right.

Value Binary Fraction Exponent
128 10000000 1.0000000 7
13 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5

Figure 40: Normalization Examples

14.4.2 Round to Fit Within Fraction

Second, we have to round the fraction so that it fits within the designated bits. We denote the bits
at the edge of the length of our frac with GRS as in the next figure.
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Figure 41: Creating Special Rounding Bits

• round = 0 ⇒ round down/truncate

• round = 1, sticky = 1 ⇒ round up

• round = 1, sticky = 0 ⇒ round to even

- ground = 1 ⇒ round up

- ground = 0 ⇒ round down/truncate

Figure 42: Rounding Fraction Examples

14.4.3 Postnormalize to Deal with Effects of Rounding

Finally, rounding up might have led to an overflow. In that case, we have to shift right and incre-
ment the exponent to postnormalize.

Figure 43: Postnormalization Example

14.5 Floating-Point Addition and Multiplication

14.5.1 Floating-Point Multiplication

(−1)sM2E = (−1)s1M12E1 × (−1)s2M22E2

• new sign s = s1ˆs2
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• new significand M = M1 · M2

• new exponent E = E1 + E2

But this theoretical result probably doesn’t fit into the floating point representation. If M ≥ 2,
M needs to be shifted right and the exponent must be incremented. If E is out of range, we have
an overflow and get ∞. Finally, M must be rounded to fit into frac precision.

The most difficult past is multiplying the significands, but that can be done by the already
existing integer multiplier.

Mathematical Properties of Comm. Ring FP Multiplication (∕= Real Number Mult.)
closed under multiplication yes (but may generate infinity or NaN)

commutativity yes
associativity no (due to overflow and inexactness of rounding)

1 as multiplicative identity yes
multiplication distributes over addition no

Figure 44: Mathematical Properties of Floating Point Multiplication

Monotonicity holds except for infinities and NaNs.

14.5.2 Floating-Point Addition

(−1)sM2E = (−1)s1M12E1 + (−1)s2M22E2

where E1 > E2 without loss of generality.

Figure 45: Signed Align and Add

The result of addition is simply signed align and add. Thus, the exponent of the result is just
E1 if we don’t have to modify it due to shifting and rounding in the end. Specifically, because the
precise result likely won’t fit in our floating point representation, we have to modify the result:

• If M ≥ 2, shift M right and increment E.

• If M < 1, shift M left k positions, decrement E by k

• overflow if E out of range

• round M to fit frac
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Mathematical Properties of Abelian Group FP Addition (∕= Real Number Add.)
closed under addition yes (but may generate infinity or NaN)

commutativity yes
associativity no (due to overflow and inexactness of rounding)

O as additive identity yes
every element has additive inverse almost (except infinities and NaNs)

Figure 46: Mathematical Properties of Floating Point Addition

Additionally, monotonicity holds except for infinities and NaNs.
It follows that the order of adding FP numbers matters. We should always add from small to

large numbers after sorting.

14.6 Floating Poin Puzzles

x == (int)(float)x

• This does not always hold, because a float may not store all integers.

• Floats have 24 significant bits, so they don’t have the precision of 31 bits of a signed int.

• #significantBits ¿ #numberBitsInt

x == (int)(double)x

• This always holds, because the significant bits of a double have a enough precision for an
int.

f == (float)(double)f

• This always holds, because a double may store a float without precision loss.

d == (float)d

• This does not always hold, because when comparing, we implicitly cast so that no precision
is lost ( f loat → double ). Hence, we may loose precision of d when having it as a float in
an intermediate step. This is as with integers, which are also promoted so that accuracy is
preserved.

f == -(-f)

• This always holds, because floating points numbers are fully symmetric. We have a sign bit.

2/3 == 2/30.

• This does not always hold.

• 2/3 becomes 0 in integer arithmetic. After promoted to a floating point number, it does not
equal the fraction of 2/30. (being floating point division as 2 is promoted to a floating point
number).
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d<0.0⇒((d*2)<0.0)

• This always holds. Going to infinity would still preserve this equality.

d>f⇒-f>-d

• This always holds.

• Negation is just flipping the sign bit.

d*d >= 0.0

• This only breaks if d is NaN.

(d+f)-d == f

• This does not always hold, because d+f may become infinity, which remains infinity even
with -d. And ∞ may ∕=f.

14.7 SSE Floating Point

This refers to ’Streaming SIMD Extensions’, which is an extension to the x86 architecture to
support floating point arithmetics. We refer to them as SIMD, because they operate as vector
instructions, which allows parallel operation on small vectors of integers or floats.

They are available with Intel’s SSE family starting with Pentium 3, which supported 4-way
single precision instructions. With SSE2 from Pentium 4, we also had 2-way double precision in-
structions. An all x86-64 processors have SSE3, which is a superset of SSE2 and SSE. Originally
with the 8086 processor, one had to connect a separate unit (8087) to enable IEEE floating point
arithmetic.

The floating point SSE instructions work on separate SSE3 registers. Those are 16 128 bit/16
byte register, which each can store 2 double precision or 4 single precision floating point numbers.
They are named %xmm0 to %xmm15. All of those are caller saved and we pass arguments in %
xmm0 to %xmm7. Further arguments are passed on the stack. The return value is stored in %xmm0.

In those XMM registers, we can store different data types and have different associated instruc-
tions accordingly.

• integer vectors: 16-way bytes, 8-way 2 bytes, 4-way 4 bytes/int

Figure 47: Integer Vectors in XMM Registers

• floating point vectors: 4-way single precision, 2-way double precision

Figure 48: Floating Point Vectors in XMM Registers
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• floating point scalars: single precision, double precision

Figure 49: Floating Point Scalars in XMM Registers

As one can store integer vectors in those register, there are also integer operations. But we
focus on floating point instructions, which look like operation + single slot/packed
+ single precision/double precision.

• addps %xmm0 %xmm1

Figure 50: Integer Vectors in XMM Registers

• addss %xmm0 %xmm1

Figure 51: Floating Point Vectors in XMM Registers

Some more instructions:

• movss S D: D <- S

• addss S D: D <- D + S

• subss S D: D <- D - S

• mulss S D: D <- D * S

• divss S D: D <- D / S

• maxss S D: D <- max(D,S)

• minss S D: D <- min(D,S)

• sqrtss S D: D <- sqrt(S)

Furthermore, there are instructions to convert between single and double precision as well as
integers and and floating point numbers:

• cvtss2sd: single -> double

• cvtsd2ss: double -> single
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• cvtsi2ss: int -> single (rounding)

• cvtsi2sd: int -> double (rounding)

• cvtsi2ssq: quad int -> single (rounding)

• cvtsi2sdq: quad int -> double (rounding)

• cvttss2si: single -> int (truncation)

• cvttsd2si: double -> int (truncation)

• cvttss2siq: single -> quad int (truncation)

• cvttsd2siq: double -> quad int (truncation)

When the int can’t contain the double (being NaN, ∞, ...) the int gets T_MIN in most
cases. But this is undefined behavior technically. And when converting with packed and between
differently sized types (single and double precision), we convert only as many entries as possible
with the larger type and always consider the lowest blocks in the register if we can not fill the
entire register.

When using floating point constants in code, the assembly looks unexpected. That is mostly,
because assembly doesn’t support floating point numbers in a sense, that we can only express bits
and show them as integers. Thus, double precision floating point numbers will be stored as two
consecutive .long (two 32 bit numbers). In the assembly, we see the respective int representation
of those 32 bits listed separately.

When writing C code with floating pint numbers, one can instruct the compiler to vectorize
the instructions instead of only operating on one floating point value at a time. With gcc one
can use the flag -ftree-vectorize for example. But a speedup is not guaranteed and the
optimizations are rather limited. icc (Intel compiler) is much better at autovectorizing. To get
really high performance one has to do the vectorization oneself. To do so, one uses intrinsics, the
C interface to vector instructions.

Intel AVX512 is a more recent extension and support 8-way double and 16-way single preci-
sion vectorization.

To get the highest performance, one often resorts to GPUs. Those support very high paral-
lelism with several thousands of threads even on older cards. But programming GPUs is very
hard, because one can’t use generic C. Programming involves using frameworks/languages such
as CUDA or OpenCL. There is also little support for higher-level languages, because compilers
struggle to vectorize (complicated) code without a lot of code annotation. Restrictions for vector-
ization include: data must be aligned, data cannot overlap, loop sizes must be multiple of vector
width, ...
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15 Optimizations

Here, we consider how the compiler can optimize our code during compilation to increase per-
formance. In the workflow/pipeline required to get an executable from a .c file, this is part of the
actual compilation done by cc1. We will see what things the compiler can do to help and what
may stop the compiler from doing so. Also, we learn about optimizations we can do manually but
the compiler can’t do by itself for various reasons.

We often consider matrix multiplication as an example of the different concepts here. As al-
ready seen in the introduction to the course, we can speed up matrix multiplication noticeably. The
main speedup (20x) comes from: blocking/tiling, loop unrolling, array scalarization, instruction
scheduling, ... This increases instruction level parallelism (ILP), leads to better register use, and
reduces cache misses. That is all possible although all codes use the same fundamental approach
of three nested loops with asymptotic complexity O(n3).

We already know about asymptotic complexity from other classes. While constants are ne-
glected there, they matter in the real world. Those aspects (among others) impact runtime perfor-
mance:

• constants

• coding style (unnecessary procedure calls, unrolling, reordering, ...)

• algorithm structure (locality, ILP, ...)

• data representation (complicated structs or simple arrays)

To get very good performance, one must optimize at multiple levels: algorithms, data represen-
tation, procedures, loops, ... We try to understand how the compiler optimizes with consideration
of execution and memory units to write the best code. This also includes measuring program
performance and identifying bottlenecks. We want to do all this while still having maintainable
(modular and general) code.

15.1 Optimizing Compilers

For gcc, we can use the -O flag to specify different optimization levels: -O0, -O1, -O2, -O3
. But there are also other flags such as -march=xxx, with which one can specify the target
architecture and -m64 to state that this will only run on 64 bit machines. One should try different
flags, because -O3 will not always get better performance than -O2, for example. Also, other
compilers such as icc may produce faster binaries than gcc.

Compilers are good at mapping a program to a machine. This includes optimizing: register
allocation, code selection and ordering, dead code elimination, and eliminating minor (common)
inefficiencies. But compilers usually do not increase asymptotic performance. It is up to the
programmer to find the best algorithmic solution for a problem. For large inputs, algorithmic
improvements may be more important than system-level optimizations.

Also, there are certain ’optimization blocker’ (discussed later), which prevent the compiler to
optimize for correctness reasons, because of implicit assumptions made by the programmer but
not known to the compiler.

Compiler optimizations are conservative to guarantee correctness. Program behavior must
not be changed under any circumstances. Most analysis is performed only within procedures as
whole-program analysis is too expensive in most cases. Furthermore, analysis is based on static
information. The compiler usually does not have information on runtime characteristics such as
input values.
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As the potential from just working with compiler flags, we may consider the following matrix
multiplication. Without optimizations it runs in 820 cycles, with -O1 in 200 cycles, with -O2 in
132 cycles, with -O3 in 32 cycles, and with -O3 -m64 -march=haswell -fno-tree-
vectorize in 8 cycles.

Listing 95: Matrix Multiplication for Benchmark

1 double a[4][4];
2 double b[4][4];
3 double c[4][4]; // set to zero
4 /* Multiply 4 x 4 matrices a and b */
5 void mmm(double *a, double *b, double *c, int n) {
6 int i, j, k;
7 for (i = 0; i < 4; i++)
8 for (j = 0; j < 4; j++)
9 for (k = 0; k < 4; k++) c[i * 4 + j] += a[i * 4 + k] * b[k

* 4 + j];
10 }

15.2 Code Motion and Precomputation

Code motion refers to moving some computation so that it is not unnecessarily repeated. This
leads to a frequency reduction of said computation. This is also called precomputation, because
we precompute a value once to reuse it.

But notice that compilers are not always good at exploiting arithmetic properties.

Listing 96: Unoptimized Code

1 void set_row(double *a, double

*b, long i, long n) {
2 long j;
3 for (j = 0; j < n; j++)
4 a[n*i+j] = b[j];
5 }

Listing 97: Optimized with Code Motion

1 void set_row(double *a, double

*b, long i, long n) {
2 long j;
3 int ni = n*i;
4 for (j = 0; j < n; j++)
5 a[ni+j] = b[j];
6 }

The compiler will hesitate to do some optimizations. For instance, because floating point
operations usually are not associative and, thus, refrain from reordering. We would have to do this
manually. So it is worth looking at the assembly to see what’s going on.
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Listing 98: Unoptimized Code

1 // C
2 up = val[(i-1)*n + j];
3 down = val[(i+1)*n + j];
4 left = val[i*n + j-1];
5 right = val[i*n + j+1];
6 sum = up + down + left + right;
7

8 // ASSEMBLY
9 leaq 1(%rsi), %rax # i+1

10 leaq -1(%rsi), %r8 # i-1
11 imulq %rcx, %rsi # i*n
12 imulq %rcx, %rax # (i+1)*n
13 imulq %rcx, %r8 # (i-1)*n
14 addq %rdx, %rsi # i*n+j
15 addq %rdx, %rax # (i+1)*n+j
16 addq %rdx, %r8 # (i-1)*n+j

Listing 99: Optimized by Extracting Common
Subexpression

1 // C
2 int inj = i*n + j;
3 up = val[inj - n];
4 down = val[inj + n];
5 left = val[inj - 1];
6 right = val[inj + 1];
7 sum = up + down + left + right;
8

9 // ASSEMBLY
10 imulq %rcx, %rsi # i*n
11 addq %rdx, %rsi # i*n+j
12 movq %rsi, %rax # i*n+j
13 subq %rcx, %rax # i*n+j-n
14 leaq (%rsi,%rcx), %rcx # i*n+j+n

15.3 Strength Reduction

This means replacing a costly operation with a simpler one. This is usually a specialized/”weaker”
instruction. For instance, we may replace *16 with <<4. The usefulness of such replacements
depends on the target machine as the relative machine latency of the instructions determines the
performance gain. Replacing multiplications with shifting is usually worth it. This may also be
done automatically by the compiler if optimizations are enabled.

Another common strength reduction is to replace multiplications with additions.

Listing 100: Unoptimized Code

1 for (i = 0; i < n; i++) {
2 for (j = 0; j < n; j++) {
3 a[n * i + j] = b[j];
4 }
5 }

Listing 101: Optimized with Strength Reduc-
tion

1 int ni = 0;
2 for (i = 0; i < n; i++) {
3 for (j = 0; j < n; j++) {
4 a[ni + j] = b[j];
5 }
6 ni += n;
7 }
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15.4 Optimization Blockers

15.4.1 Procedure Calls

Listing 102: Unoptimized Code

1 void lower(char *s) {
2 int i;
3 for (i = 0; i < strlen(s); i

++) {
4 if (s[i] >= ’A’ && s[i] <=

’Z’) {
5 s[i] -= (’A’ - ’a’);
6 }
7 }
8 }

Listing 103: Optimized with Code Motion

1 void lower2(char *s) {
2 int i;
3 int len = strlen(s);
4 for (i = 0; i < len; i++) {
5 if (s[i] >= ’A’ && s[i] <=

’Z’) {
6 s[i] -= (’A’ - ’a’);
7 }
8 }
9 }

It may seem surprising, but Listing 102 is actually O(n2). This is, because strlen(s) is
computed during each iteration to check the condition. And being implemented via iteration of
the string, that function takes O(n), leading to O(n2) totally. To improve performance, we can
do manual code motion/precomputation and, thus, make the assumption that the string length is
constant explicit.

The compiler can’t do this optimization on its own, because it does not know about potential
side effects of strlen(...). And if calls to that function might return different values for
the call, it cannot be guaranteed that the behavior is identical if we precompute the value. The
compiler does not look inside functions that are called. It treats each as a black box.

Thus, either we have to do the code motion manually as above. Or we have to inline the
function so that the compiler optimizes.

15.4.2 Memory Aliasing

In C one can easily have two memory references/pointers refer to a single location. That is a
problem, because the compiler generally must assume that this is the case to guarantee correctness
in any case. This assumption, however, prohibits the compiler from doing many optimizations.
Mostly, because it must assume that when working with two pointers that those might reference
to the same/overlapping memory. Hence, simple looking operations cannot be simplified, because
they might not be that simple in certain edge cases.

Listing 104: Row Sum Comptutation

1 void sum_rows1(double *a,
double *b, long n) {

2 long i, j;
3 for (i = 0; i < n; i++) {
4 b[i] = 0;
5 for (j = 0; j < n; j++)
6 b[i] += a[i*n + j];
7 }
8 }

Listing 105: Assembly of Listing 104 (inner-
most loop only)

1 .L53:
2 addsd (%rcx), %xmm0
3 addq $8, %rcx
4 decq %rax
5 movsd %xmm0, (%rsi,%r8,8)
6 jne .L53

We can not guarantee that b and a don’t overlap in the addresses they reference to. If they
don’t overlap, this works as our first intuition tells us. But if they overlap, the result will be quite
different. Thus, the compiler must make the update to b[i] in every iteration of the loop to corre-
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spond to the program’s semantics. Doing it just once after accumulating all values would be faster
but not behave identically in every case.

One way to combat aliasing is scalar replacement. We use a temporary variable for arrays
elements that are reused. This only works if there is no memory aliasing (at least with the same
behavior) - in many cases we make this assumption.

Listing 106: Scalar Replacement Example

1 void sum_rows2(double *a,
double *b, long n) {

2 long i, j;
3 for (i = 0; i < n; i++) {
4 double val = 0;
5 for (j = 0; j < n; j++)
6 val += a[i*n + j];
7 b[i] = val;
8 }
9 }

Listing 107: use of restrict keyword

1 void sum_rows2(double *restrict
a, double *restrict b, long
n) {

2 long i, j;
3 for (i = 0; i < n; i++) {
4 b[i] = 0;
5 for (j = 0; j < n; j++)
6 b[i] += a[i*n + j];
7 }
8 }

Another option is to use the restict keyword, which as introduced with C99 for pointer
declarations. This tells the compiler that during the lifetime of the annotated pointer, no other
pointer will access the same data structure, which allows the compiler to ignore aliasing for that
pointer. If the user violates this guarantee, the behavior is undefined.

15.5 Blocking and Unrolling

This introduces a technique that is relevant when working with matrices or data structured in
matrices. Often many or even all array elements are reused but it is a bit tricky to take advantage
of that. Blocking and loop unrolling provide techniques to utilize this reuse.

Listing 108: Matrix Multiplication

1 c = (double *) calloc(sizeof(double), n*n);
2 /* Multiply n x n matrices a and b */
3 void mmm(double *a, double *b, double *c, int n) {
4 int i, j, k;
5 for (i = 0; i < n; i++)
6 for (j = 0; j < n; j++)
7 for (k = 0; k < n; k++)
8 c[i*n+j] += a[i*n + k]*b[k*n + j];
9 }

Figure 52: Matrix Multiplication Schematic

The performance of this and why blocking and unrolling works can be attributed cache optimiza-
tion. When reading the section on caches, this will become more apparent. This example will also
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be discussed again in that section. Here, it is important to understand which matrix entries are in
cache when the computation is done to understand when and how we want to reuse the elements
while they are still in the cache.

Figure 53: Entries In Cache - Beginning of c Entry Computation

Figure 54: Entries In Cache - End of c Entry Computation

15.5.1 Blocking

Blocking means to do computations in blocks, which we saw to fit into the cache. By doing so, we
compute on a set of elements, which can be kept in the cache so that we minimize cache misses
and reduce wait time for memory.

Listing 109: Blocking in C

1 c = (double *)calloc(sizeof(double), n *n);
2 /* Multiply n x n matrices a and b */
3 void mmm(double *a, double *b, double *c, int n) {
4 int i, j, k;
5 for (i = 0; i < n; i += 2) // iterating over blocks
6 for (j = 0; j < n; j += 2)
7 for (k = 0; k < n; k += 2)
8 for (i1 = i; i1 < i + 2; i1++) // in block
9 for (j1 = j; j1 < j + 2; j1++)

10 for (k1 = k; k1 < k + 2; k1++)
11 c[i1 * n + j1] +=
12 a[i1 * n + k1] * b[k1 * n + j1];
13 }

Figure 55: Blocking
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15.5.2 Loop Unrolling

Unrolling loops means that we concatenate the different loop iterations directly and thus can also
do cross-loop-iteration optimizations. Those optimizations can be very intricate. But in any case
we save some jumping at run time.

In this case, we can unroll the computation of the four values in our 2 × 2 grid. This can
be beneficial, because we use each element of our input matrices twice. If we unroll the four
computations, we can do scalar replacement for the input values.

Listing 110: Unrolling Matrix Multiplication

1 c = (double *) calloc(sizeof(double), n*n);
2 /* Multiply n x n matrices a and b */
3 void mmm(double *a, double *b, double *c, int n) {
4 int i, j, k;
5 for (i = 0; i < n; i+=2)
6 for (j = 0; j < n; j+=2)
7 for (k = 0; k < n; k+=2)
8 <body>
9 }

10

11 <body>
12 c[i*n + j] =
13 a[i*n + k]*b[k*n + j] + a[i*n + k+1]*b[(k+1)*n + j] + c[i*n + j]
14

15 c[(i+1)*n + j] =
16 a[(i+1)*n + k]*b[k*n + j] + a[(i+1)*n + k+1]*b[(k+1)*n + j] + c

[(i+1)*n + j]
17

18 c[i*n + (j+1)] =
19 a[i*n + k]*b[k*n + (j+1)] + a[i*n + k+1]*b[(k+1)*n + (j+1)] + c[

i*n + (j+1)]
20

21 c[(i+1)*n + (j+1)] =
22 a[(i+1)*n + k]*b[k*n + (j+1)]
23 + a[(i+1)*n + k+1]*b[(k+1)*n + (j+1)] + c[(i+1)*n + (j+1)]
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16 Architecture and Optimizations

In this chapter, we consider how to optimize our programs beyond what the compiler can do for us
by considering the specific characteristics of a processor. To do so, we need some general under-
standing of modern processor designs and their relation to performance. Much of the architectural
foundations here have already been discussed in in the DDCA class and won’t be elaborated on
much.

Optimizations in general are about exploiting ILP (instruction level parallelism), where the
performance is limited by data dependencies. Simple transformations which change the depen-
dencies of subsequent instructions/tasks can yield dramatic performance improvements. Those
optimizations often require the use of associativity and distributivity in computations, even if
floating point arithmetics technically doesn’t guarantee those. We then trade accuracy (floating
point numbers are an approximation anyway) for performance.

To analyze and compare the performance of different setups, we need a program, which we
optimize to see how those optimizations impact performance. Such a program whose performance
we are interested in is called a benchmark. In addition, we need performance metrics. Those are
quantitative measurements of the performance of our benchmark. We can look at the latency and
throughput of requests.

16.1 Modern Processor Design

Most abstractly, we can compute the program execution time (”performance”) from three metrics:
IC (instruction count of the program), CPI (cycles per instruction), and CCT (clock cycle time).
We have program execution time = IC · CPI · CCT . We can reduce the IC by optimizing our
program and reducing its complexity in regards to the instruction count. The other two factors will
be considered below.

The most simple model of a processor considers a sequential processor design. Those are not
used in practice but provide fundamental understanding. Modern processors are pipelined, su-
perscalar, out-of-order, have pipeline registers, pipeline control logic, data/control hazards, stalls,
data forwarding, branch prediction, ... (all this was discussed in DDCA). All those enable faster
systems by utilizing parallelism.

16.1.1 Sequential Processor Stages

In a sequential processor, each instruction passes through some stages: Fetch, Decode, Execute,
Memory, Write Back, and PC Update. In one cycle, the signal must propagate through instruction
memory, the register file, the ALU, data memory, ... Thus, the clock needs to run very slowly and
h/w units are only active for a fraction of a cycle. This is wasteful in regards to h/w and time.
Sequential processing is too slow to be practical.

16.1.2 Pipelined Hardware

With pipelining, we separate the stages and allow executing among those in a pipelined fashion.
However, then we must consider data hazards (handled by data forwarding and stalling), control
hazards (handled by canceling upon a misprediction and stalling), and control combinations.

By increasing the pipeline depth, we can reduct the CCT . But notice that reducing the CCT
by increasing the pipeline depth naturally also slightly increases the latency for each instruction
to go through the pipeline. But the throughput on average still get’s higher, which also keeps the
CPI low. But there are limits to increasing the pipeline depth, because pipeline registers add
delay, we can’t split the steps completely equally, we have clock skew, ...
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Furthermore, we can’t pipeline optimally/keep the pipeline full at the entire time. Thus, the
CPI does not only increase slightly due to latencies of pipeline registers. But also because of stalls
and cancelled instructions when a branch is mispredicted. We write: CPI = CPIbase+CPIstalls.
Stalls may be caused by data hazards (read-after-write, write-after-read, write-after-write), control
hazards (resolving jumps, branches), and memory latency.

16.1.3 Superscalar Processors

Modern processors are not only pipelined but also superscalar. This means that they can issue and
execute multiple instructions in one cycle. Superscalar is understood as out-of-order execution
engines here. The instructions are retrieved from a sequential instruction stream and are usually
scheduled dynamically. The benefit is clearly that superscalar processors can take advantage of
instruction level parallelism that most programs have without any programming effort.

Superscalar CPUs for x86 are a bit more complicated, because x86 is a CISC (complex in-
struction set computer). On the one hand, instructions have different sizes when encoded. So
the PreDecode separates those instructions, which requries more work that in a RISC machine.
On the other hand, the complex instructions of the x86 ISA are split up in hardware into micro
instructions, which is done to keep the hardware comparatively simple.

Superscalar Processor Performance .

Instruction Latency Cycles/issue
Load/store 4 1
Int Add 1 1
Int Multiply 3 1
Int/Long Divide 3 − 30 3 − 30
Sngl/Dbl FP Multiply 5 1
Sngl/Dbl FP Add 3 1
Sngl/Dbl FP Divide 3 − 15 3 − 15

Figure 56: Intel Superscalar Haswell CPU Latencies

Notice that an execution of several instructions may be latency bound or throughput bound. If
we want to do five integer multiplications and those five multiplications are independent, we can
just issue them one after another and are done in 7 cycles. We are throughput bound. But if they
depend on each other, we must wait for one to complete for the next to start. This takes 15 cycles.
We are latency bound.

So the major aspect to reach high performance is to keep pipelines filled and not let any h/w
run idle.

16.1.4 Register Renaming

Remember that we discussed data hazards before.

• read after write (RAW): true dependence

• write after write (WAW): output dependence

• write after read (WAR): anti dependence
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Notice that only RAW requires us to really wait for the previous computation to complete. The
other dependencies only exist due to a limited number of registers. For instance, with write after
write we only need to ensure that subsequent instructions read the second write. But nothing is
stopping us from computing the second value to be written first. And we can actually do so with
register renaming.

This bases on having more registers in hardware than the ISA makes available to the program-
mer. We map architectural registers to a larger pool of physical registers and give each new value
produced its own physical register. That avoids WAW and WAR hazards.

16.1.5 Dataflow Execution

Through what we have now learned about modern processors, we see that they internally function
somewhat like a dataflow processor. The traditional imperative execution view considers registers
as fixed storage locations and instruction must be executed in the specified sequence to guarantee
proper program behavior. But through pipelining, out-of-order execution, register renaming, etc.
modern processors can be better understood with a functional view. Each write is understood
to create a new instance of a value and operations can be performed as soon as all operands are
available. There is no need to execute in the original sequence. Only the retirement/write-back to
memory must be done in-order.

Figure 57: Dataflow Function View

16.2 Architecture-Based Optimization

We will consider this simple benchmark here, where data_t may be some data type such as
int, long, float or double. OP and IDENT will be replaced by the operation and associated
initial value: +/0, */1.

Listing 111: Benchmark Program

1 struct vec {
2 size_t len;
3 data_t *data;
4 }
5

6 int get_vec_element(struct vec* v, size_t idx, data_t *val) {
7 if (idx >= v->len)
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8 return 0;
9 *val = v->data[idx];

10 return 1;
11 }
12

13 void combine1(struct vec *v, data_t *dest) {
14 long int i;
15 *dest = IDENT;
16 for (i = 0; i<vec_length(v); i++)
17 {
18 data_t val;
19 get_vec_element(v,i,&val);
20 *dest = *dest OP val;
21 }
22 }

For this we will consider the Intel Haswell Architecture. Our CPU has 2 load units, 2 store
units, 4 integer addition units, 1 integer multiplication unit, 2 floating point multiplication units, 1
floating point addition unit, and 1 floating point division unit. The latencies are as before an as in
this figure.

Instruction Latency Cycles/issue
Load/store 4 1
Int Add 1 1
Int Multiply 3 1
Int/Long Divide 3 − 30 3 − 30
Sngl/Dbl FP Multiply 5 1
Sngl/Dbl FP Add 3 1
Sngl/Dbl FP Divide 3 − 15 3 − 15

Figure 58: Intel Superscalar Haswell CPU Latencies

One important metric is Cycles per Element (CPE). It measures how well the procedure would
scale with big input vectors. When looking at the total cycles taken for sone amount of elements,
it is comprised of an overhead and some amount of CPE. So the CPI is the slope of the execution
time graph.

If we take our program as in combine1 we get a different performance depending on the
chosen optimization flags.

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14

Figure 59

16.2.1 Basic Optimizations

• First, there are some optimizations we have already seen that compilers can not do. For
instance, the compiler doesn’t know that vec_length(...) doesn’t have side effects
and reevaluates it at each iteration for an overhead.
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• Additionally, because of potential memory aliasing between dest and v, the compiler must
mandate a write to dest in each iteration, although we semantically care about the accu-
mulation and exclude memory aliasing in general.

• The element access with get_vec_element(...) also is quite inefficient, because it’s
an unnecessary procedure call with an overhead. And we perform some redundant bound
checks in that procedure. By inlining it, we can increase performance.

Listing 112: Optimized Benchmark - combine4

1 void combine4(struct vec *v, data_t *dest)
2 {
3 long i;
4 long length = vec_length(v);
5 data_t *d = get_vec_start(v);
6 data_t t = IDENT;
7 for (i = 0; i<length; i++)
8 t = t OP d[i];
9 *dest = t;

10 }

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

16.2.2 Latency Bound (Superscalar CPU)

When we look at our program, performance after the latest optimizations, we can see that our
execution is currently latency bound. This is easy to understand, because we execute the oper-
ations one after another and the previous one must complete before the next one can start. The
dependencies are sequential and our performance is dictated by the latency of the OP.

Also, we notice that the integer is even worse than latency bound. This comes, because we
of course have some overhead with our for loop. But with the longer multiply and FP operations,
those instructions can happen in parallel. But the ’quick’ int add cannot swallow this overhead.
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Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Latency bound 1.00 3.00 3.00 5.00

Figure 60: Reason for Latency
Boundness

16.2.3 Loop Unrolling

Through loop unrolling, we perform 2x more useful work per iteration. This helps to improve
performance for int add, because we now have additional time to execute the loop jumping in
parallel through the additional computation.

Listing 113: Optimized Benchmark - unroll2a_combine

1 void unroll2a_combine(struct vec *v, data_t *dest) {
2 long length = vec_length(v);
3 long limit = length-1;
4 data_t *d = get_vec_start(v);
5 data_t x = IDENT;
6 long i;
7 /* Combine 2 elements at a time */
8 for (i = 0; i < limit; i+=2) {
9 x = (x OP d[i]) OP d[i+1];

10 }
11 /* Finish any remaining elements */
12 for (; i < length; i++) {
13 x = x OP d[i];
14 }
15 *dest = x;
16 }
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Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency bound 1.00 3.00 3.00 5.00

16.2.4 Throughput Bound (Superscalar CPU)

Now, we can compare our performance the the theoretical throughput bound. Because we have 4
functional units for integers addition and 2 functional units for load, the integer add is bottlenecked
by the 2 loads per iteration. For int multiply and FP add we only have one unit and are limited to
one cycle per element. For fp multiply, we have two units and thus can also improve the throughput
bound.

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

16.2.5 Reassociation

Now we slightly change our program. This is called reassociation, because we change the order in
which the operations are performed on the elements in one loop iteration. Notice that for FPs this
may change the result of the program, because fp operations are not associative.

With this approach we break sequential dependence. Instead of having to wait for the x write
of the previous iteration to finish, we can already start performing an operation. We thus need to
stall/waste less time to wait for the x from the previous iteration to become available.

Listing 114: Optimized Benchmark - unroll2aa_combine

1 void unroll2aa_combine(struct vec *v, data_t *dest) {
2 long length = vec_length(v);
3 long limit = length-1;
4 data_t *d = get_vec_start(v);
5 data_t x = IDENT;
6 long i;
7 /* Combine 2 elements at a time */
8 for (i = 0; i < limit; i+=2) {
9 x = x OP (d[i] OP d[i+1]);

10 }
11 /* Finish any remaining elements */
12 for (; i < length; i++) {
13 x = x OP d[i];
14 }
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15 *dest = x;
16 }

As we shorted the linear dependencies by about half, this reduces the required cycles by 50 %
generally. Notice that this didn’t help for integer add, because integer addition is here limited by
the loads as they take comparatively longer - 4 cycles instead of a 1 cycle add.

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

16.2.6 Loop Unrolling with Separate Accumulators

To fix the issue for the integer addition, where the load dominates the actual operation, we can use
separate accumulators. This is a similar to reassociation as we still change the order of evaluation
for improved performance. But now we don’t have to wait for both loads to finish to continue but
can wait on the loads and accumulate each independently.

Listing 115: Optimized Benchmark - unroll2a_combine

1 void unroll2a_combine(struct vec *v, data_t *dest) {
2 long length = vec_length(v);
3 long limit = length-1;
4 data_t *d = get_vec_start(v);
5 data_t x0 = IDENT;
6 data_t x1 = IDENT;
7 long i;
8 /* Combine 2 elements at a time */
9 for (i = 0; i < limit; i+=2) {

10 x0 = x0 OP d[i];
11 x1 = x1 OP d[i+1];
12 }
13 /* Finish any remaining elements */ for (; i < length; i++) {
14 x0 = x0 OP d[i];
15 }
16 *dest = x0 OP x1;
17 }
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Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

16.2.7 Combining Multiple Accumulators and Unrolling

Finally, we can unroll further. Specifically, we can unroll to any degree L and accumulate K results
in parallel. But L must be a multiple of K for this to make sense. Otherwise, the accumulation
would be not evenly distributed and performance doesn’t profit. For different operations and
data types, the best unrolling factor is different. Through a practical measurement one can best
determine how far to unroll and accumulate.

Figure 61: Experiment for Double Mult. Figure 62: Experiment for Integer Add.

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Best 0.54 1.01 1.01 0.52
Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

16.2.8 SIMD Operations

But there is one trick to get even higher performance. Specifically, to use vector instructions/SIMD
instructions. Then, one can truly parallelize the operations on multiple values. One unrolled loop
iteration can then be done in one instruction instead of multiple instructions for each accumulator
separately.
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Method Integer Double FP
Operation Add Mult Add Mult
Combine1 unoptimized 22.68 20.02 19.98 20.18
Combine1 -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50
Vector throughput bound 0.06 0.12 0.25 0.12
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17 Caches

The main performance bottleneck for modern processors is memory. Processors speed evolved ac-
cording to Moore’s law (doubling about every 18 months). But the memory infrastructure doesn’t
scale as well.

Consider the Intel Haswell architecture. Such processor can process at least 512 bytes/cycle.
But the memory bandwidth is limited at 10 Bytes/cycles with a latency of 100 cycles. Thus, when
having to work with lots of memory, it will reduce our performance noticeably.

The solution to the memory problem evolved to be mainly caches. Caches store a subset of the
content of main memory for faster access for the processor. When we request some content from
an address from the processor, the request goes through multiple levels of caches. When content
is not in the cache, the request is forwarded to the next cache level or main memory. We talk of a
miss when content is not in a cache, otherwise we have a hit. When we want to add content to a
cache, we need to discuss two policies:

• placement policy: where the data goes in the cache

• replacement policy: determine which block gets evicted if there is not sufficient space

We manage the content of a cache in the form of cache blocks, which are blocks of consecutive
memory addresses.

17.1 Cache Performance

To properly assess and discuss cache, we need to measure their performance. To do so, we define
multiple metrics:

• miss rate

– fraction of the memory addresses not found in the cache

– misses
accesses = 1 − hit rate

– For L1 caches, the miss rate is usually 3 − 10%
– For L2, ... caches, the miss rate can be very low - ≤ 1%

• hit time

– time to deliver a line/block in the cache to the processor (this includes the time to
check whether that block is even in the cache)

– For L1 caches, the hit time usually is 1-2 cycles.

– For L2 caches, the hit time usually is 5-20 cycles.

• miss penalty

– additional time required because of a miss

– When we miss and not only need to look in another cache but have to go to main
memory, the latency is typically 50-200 cycles.

When we consider performance across two caches, we must consider the miss rate for each
level and then the latency of processing the request at the next level.

• average memory access time = hitTimeL1 + missRateL1 ∗ missPenaltyL1

• missPenaltyL1 = hitTimeL2 + missRateL2 ∗ missPenaltyL2
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• missPenaltyL2 = DRAMaccessTime + (blockSize/bandwidth)

We distinguish between different types of cache misses:

• cold (compulsory) miss: occurs on first access to block

• conflict miss: most caches limit placement to a small subset of available slots; the cache
may be large enough to store this but this block got evicted because all possible slots are in
use

• capacity miss: set of active cache blocks (working set) is larger than the entire cache

• coherency miss: this occurs on multiprocessors where a different core changed so content
so that the current content is now invalid

17.2 Cache Organization

• Caches may have (basically always) multiple sets. Each cache block is assigned to one set.

• Associativity of a cache says how many lines are available per set. Meaning, how many
cache blocks assigned to one set can be stored at the same time in the cache.

If associativity is 1, we say that we have a direct mapped cache. If associativity is
x ≥ 2, we say that we have a x-way set-associative cache.

• Each cache block contains of course the bytes according to the size of a cache blot. But
additionally, it contains a valid bit (which is used for fast eviction) and a tag, which clarifies
to which address the cache block in that set belongs, as the set only specifies part of the
address.

There really is only one replacement and placement policy with direct mapped caches as if
our cache block is not present we only have one choice to evict and place our cache block. If we
have associativity ≥ 2 we need proper replacement and placement policies to choose a line for
evication/replacment. Such policies are: random, least recently used (LRU), ...

Figure 63: Cache Organization
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17.3 Cache Reads

When we want to read from a cache, we have the memory address that is requested and need to
look at all possible positions, where that cache block may be in the cache.

1. We use the index bits to identify the corresponding set.

2. We check all lines in that set for matching tag bits. Once we found a match, we must validate
that the valid bit is set or otherwise continue to look at the remaining lines.

3. If we find the cache block in that set, we use the offset bits to identify the corresponding
byte(s) in the cache block content. If the cache block is not in the set, we must forward the
request.

Figure 64: Cache Read

17.4 The Memory Hierarchy

Caching happens at various levels of systems. We have already read about L1 and L2 caches as
two cache levels between the processor and main memory. Today, we often also have an L3 cache.
But caching happens at higher levels too, although we don’t really consider them here.

Cache type What is cached? Where is it cached? Latency (cycles) Managed by
Registers 4/8-byte words CPU core 0 Compiler
TLB Address translations On-chip TLB 0 Hardware
L1 cache 64-byte blocks On-chip L1 1 Hardware
L2 cache 64-byte blocks On-chip L2 10 Hardware
Virtual memory 4kB page Main memory (RAM) 100 Hardware + OS
Buffer cache 4kB sectors Main memory 100 OS
Network buffer cache Parts of files Local disk, SSD 1, 000, 000 SMB/NFS client
Browser cache Web pages Local disk 10, 000, 000 Web browser
Web cache Web pages Remote server disks 1, 000, 000, 000 Web proxy server
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Figure 65: Example Memory Hierarchy - Core i7

17.5 Cache Writes

So far we considered the case that some cache blocks are already in the cache and we only want to
read from them. But of course we also want to write to memory. There are two possibilities: We
want to write to a cache block that is in the cache or that is not in the cache. For each case there
are two common policies:

• write on hit

– write-through: We write immediately to memory so that memory is always consistent
with the cache copy. But this is inefficient if we do multiple writes to the same line.

– write-back: We defer the write to memory until replacement of the line. To do so we
need a dirty bit for each block to note whether it was edited or not. This generally has
higher performance but is more complex to implement.

• write on miss

– write-allocate: This loads a cache block into the cache if we want to write to it and it
is not yet present. This is common with write-back caches.

– no-write-allocate: This writes directly to memory. This is common with write-through
caches.

17.6 Other Cache Features

• unified: serves both instruction and data fetches

• private: only one core uses this cache

• shared: multiple cores share the cache

• inclusive: anything in this cache is also in every lower-level cache

• exclusive: anything in this cache is not in any lower-level cache

Another special type of caches are software caches. L1 and L2 caches considered so far are
(usually) implemented in hardware. Software caches are commonly used in higher-level caches.
For instance, virtual memory has a software component, because the operation system contributes
to the cache management. Software caches commonly have some special properties:
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• fully associative (index structures like hash tables are common)

• complex replacement policies (as misses are way more expensive at higher levels, we can
spend much more work on the best possible placement)

• not constrained to single ”block” transfer

17.7 Cache Optimization

Caches work/increase performance because of locality. Locality means that programs tend to use
data and instructions with addresses near or equal to those they have used recently.

• temporal locality: recently referenced items are likely to be referenced again in the near
future

• spatial locality: items with nearby addresses tend to be referenced close together in time

So, to optimize code for the memory hierarchy, we have to write code that has locality. For spatial
locality we want to access data contiguously. And for temporal locality, we want to do as much
of the necessary work on some data as close as possible. This can be done by choosing a proper
algorithm and transforming loops. We can work towards cache and register locality.

17.7.1 Example 1

This example exhibits temporal locality on sum and spatial locality on a[].

1 sum = 0;
2 for (i = 0; i < n; i++)
3 sum += a[i];
4 return sum;

17.7.2 Example 2

This utilizes locality through row-majority in C. Switching the loops would fail to exploit locality.

1 int sum_array_rows(int a[M][N])
2 {
3 int i, j, sum = 0;
4 for (i = 0; i < M; i++)
5 for (j = 0; j < N; j++)
6 sum += a[i][j];
7 return sum;
8 }

17.7.3 Example 3

We look at matrix multiplication. First we analyze the cache performance of a basic implementa-
tion. Afterwards we will do some basic optimizations and repeat the cache analysis.
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Basic Implementation .

Listing 116: Matrix Multiplication

1 void mmm(double *a, double *b, double *c, int n) {
2 int i, j, k;
3 for (i = 0; i < n; i++) {
4 for (j = 0; j < n; j++) {
5 for (k = 0; k < n; k++) {
6 c[i*n+j] += a[i*n + k]*b[k*n + j];
7 }
8 }
9 }

10 }

We assume that the matrix elements are doubles, that a cache block has a size of 8 doubles,
and that the cache size C is noticeably smaller than the matrix size n, i.e., C ≪ n, while being a
multiple of n.

In the first iteration of the outer loop we will incur n
8 + n = 9n

8 cache misses. There are n2

such iterations of which all will incur the same cache misses. So that total misses will amount to
9n
8 · n2 = 9

8n3.

Figure 66: Unoptimized Matrix Multiplication Cache Utilization

Optimized Implementation .

Listing 117: Matrix Multiplication with Blocking

1 c = (double *) calloc(sizeof(double), n*n);
2

3 void mmm(double *a, double *b, double *c, int n) {
4 int i, j, k;
5 for (i = 0; i < n; i+=B)
6 for (j = 0; j < n; j+=B)
7 for (k = 0; k < n; k+=B)
8 /* B x B mini matrix multiplications */
9 for (i1 = i; i1 < i+B; i1++)

10 for (j1 = j; j1 < j+B; j1++)
11 for (k1 = k; k1 < k+B; k1++)
12 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
13 }
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Again, we make some assumptions for our analysis:

• cache block size is 8 doubles

• cache size C is much smaller than the matrix size n, i.e., C ≪ n

• B is a multiple of a cache block size

• n is a multiple of B

During the first iteration for some block, there will be B2

8 misses for each block. As there are
2n
B blocks to be considered for one target blocks, this leads to 2n

B
B2

8 = nB
4 misses. As all target

blocks incur the same misses this leads to a total number of misses of ( n
B )2 · nB

4 = n3

4B .

Figure 67: Simple Optimized Analysis

If we now assume that B ≤ cache block size but still assume alignment of the blocks with
caches blocks, the computation changes.
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misses in matrix a per iteration

+ n󰁿󰁾󰁽󰂀
misses in matrix b per iteration
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Figure 68: Optimized Analysis
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18 Exception

Processors only execute instructions from startup to shutdown. They get a sequence of instructions
and execute them. The sequence of those instructions is called the control flow. So far we have
seen jumps, branches, call, and return to change the control flow. Those are caused by our program.

We now consider another way to alter control flow based on changes in the system state instead
of program state. For instance, data might arrive via a network, keys are pressed on the keyboard,
a system timer expires, ... This corresponds to the concept of exceptions: When certain events
occur, we alter the control flow.

Exceptions as familiar from high-level languages such as Java are different. They are enabled
by software constructs. But the exceptions we will discuss here rely on hardware support for their
functioning.

Fundamentally, an exception is a transfer of control to the OS in response to some event. After
handling the event, the OS may abort the program which ran, run the last instruction from the
program again, or proceed to the next instruction from the program. The code/part of the OS that
handles the exception/the event that caused the exception is called the exception handler. We say
that it processes the exception.

We distinguish between two kinds of exceptions. Synchronous exceptions are the result of
a program executing an instruction. Asynchronous exceptions are the result of events that are
external to the processor/current process.

Beyond that, we may distinguish exceptions further.

Type of Exception Cause Async/Sync
Interrupt Signal from I/O device, ... async
Trap intentional exception sync
Fault potentially recoverable error sync
Abort nonrecoverable error sync

Figure 69: Exception Types

18.1 Exception Vectors & Kernel Mode

At boot time, the OS allocates and initializes the exception table. The table’s address is stored in
the Exception Table Base Register. Each type of event has a unique exception number k, which
is used to index the table. The table stores addresses, which correspond to locations with code
to handle that specific exception. So, the handler for some exception k is called each time the
exception k occurs.

When an exception occurs and the control flow is changed to the exception handler, this also
causes a switch to kernel mode (supervisor mode/privileged mode/ring 0). This gives the exception
handler additional possibilities. Even for the same ISA/architecture, the behavior when kernel
mode is activated may vary in details.

• access to system state

• some other exceptions are disabled

• additional instructions and registers

• MMU behavior may change
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The OS (kernel) always comprises a set of trap handling functions (system calls for programs)
and code to illustrate a user-space for programs (for instance regarding virtual memory).

0 Divide error
1 Debug exception
2 Non-maskable interrupt (NMI)
3 Breakpoint
4 Overflow
5 Bounds check
6 Invalid opcode
7 Coprocessor not available
8 Double fault
9 Coprocessor segment overrun (386 or earlier)
A Invalid task state segment
B Segment not present
C Stack fault
D General protection fault
E Page Fault
F Reserved
10 Math fault
11 Alignment check
12 Machine check
13 SIMD floating point exception
14 - 1F Reserved to Intel
20 - FF Available for external interrupts

Figure 70: x86 Exception Vectors

18.2 Synchronous Exceptions

18.2.1 Traps

Traps are invoked intentionally and return the control flow to the next instruction of the program
after completion. Those may be system calls, breakpoints for debugging, special instructions, ...

One common system call/trap is to open a file.

1. the user calls open(filename, options)

2. this executes a system call (int opcode)

3. the OS exception handler then finds or creates the file and prepares it for reading/writing
(which includes loading it into memory)

4. returns an integer file descriptor and control flow back to the program

18.2.2 Faults

Faults are unintentional exceptions, where the handler may still be able to recover from the ex-
ception. If recover is successful, it returns control flow to the program and executes the faulting
instruction again. If recover fails, it aborts the program. Examples are: page faults (recoverable),
protection faults (unrecoverable), floating points exception, ...

Example: Page Fault
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1. user write to memory location

2. the corresponding page is currently not in memory but on disk

3. page handler must load page into physical memory

4. returns to faulting instruction (memory write is successful on the second try)

Example Page Fault & Invalid Memory Reference

1. user writes to memory location

2. the corresponding page is currently not in memory but on disk

3. page handler must load page into physical memory but detects an invalid memory address

4. sends SISEGV signal to user process

5. user process exits with ”segmentation fault”

18.2.3 Abort

Those are unintentional and unrecoverable exceptions. They always abort execution of the pro-
gram. Examples are: parity error (disk corruption), machine check (errors), ...

18.3 Asynchronous Exceptions

Those are exceptions, which are caused by events external to the processor. After the exception
has been processed, the control flow is set to continue at the ’next’ instruction of the program.
Some interrupts are:

• I/O interrupts: network package arriving, data arriving from disk, hitting keyboard shortcuts

• hard reset interrupt: hitting the reset (’power’) button

• soft reset interrupt: hitting ctrl-alt-delete on a PC

Interrupts are registered through the CPU interrupt-request line (edge- or level-triggered). The
interrupts are forwarded to an interrupt handler. Some interrupts are ’maskable’, which means
that they may be delayed or ignored. But some interrupt are also nonmaskable. Then, based on
the priority of the interrupt, the interrupt is dispatched to the exception handler corresponding
to the interrupt vector. Masking and prioritization is done with a PIC (programmable interrupt
controller) on modern machines. PICs are discussed below.

Neglecting the PIC for now, x86 has two interrupt pins: INTR (interrupt request) and NMI
(non-maskable interrupt). The PIC is ’before’ the INTR pin. The PIC then also makes sure that
the CPU gets one interrupt at a time. The CPU uses the INTA pin to acknowledge the interrupt.
Afterwards, the pins D0 to D7, which are part of the data bus, are used by the PIC to specify the
interrupt vector to the CPU.
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18.3.1 x86 NMI

When an interrupt is triggered through this pin, the CPU completes the current instruction and
then issues the exception handler with the interrupt vector 2. No masking may occur! This cannot
be disabled by the processor! Non-maskable interrupts are reserved for the most important events
such as major hardware failures and the watchdog timer (which is used to monitor general system
health).

Notice that there may be multiple devices connected to this pin. Thus, it cannot be said cer-
tainly which caused the interrupt. Hence, the CPU must poll potential sources. This is a slow
process, because the to be polled devices can have quite high latencies. Then, the CPU might even
get a second interrupt during that time.

18.3.2 x86 INTR (IRQ)

Notice that such interrupts can be enabled and disabled by the program by setting the IE system
flag. The CLI/STI instructions are used to set/clear the interrupt flag. If interrupts are enabled,
the CPU completes the current instruction and then proceeds like this:

1. the CPU acknowledges the interrupt using the INTA pin

2. the interrupt vector is acquired via the data bus

3. the control flow is redirected to the exception handler corresponding to the interrupt vector

Notice that the x86 interrupt vectors leave space for additional external interrupts, which may
be configured by device drivers etc. (device drivers are discussed in the final section).

18.4 Interrupt Controllers

If a processor would just expose the pins INTR, NMI, and D0 to D7 to get informed about inter-
rupts there would be some difficulties:

• identifying who caused an interrupt

• getting the correct interrupt vector (multiple devices may write simultaneously)

• what happens when multiple interrupts happen at once? (should not miss one!)

Those problems were especially dramatic in early days, when CPUs only had one pin for IRQ and
NMI.

The solution to this problem are programmable interrupt controllers (PIC).

Figure 71: Programmable Interrupt Controller

136



Each device connects separately to the PIC, which maps the pins for the individual devices to
interrupt vectors. The mapping is picked by the OS when programs register interrupt handlers and
the PIC is configured. A PIC has various capabilities:

• mapping device to interrupt vector

• buffer simultaneous interrupts: deliver interrupts separately and don’t loose any interrupts

• prioritize interrupts: prioritization of devices selected by the OS

• selectively mask individual device’s interrupts: useful for high-interrupt rate devices

All modern processors have a ’local APIC’ (local advanced programmable interrupt con-
troller), which is integrated onto the same die as the core itself. Those have even more capabilities:

• inter-processor interrupts

• programmable timers

• sophisticated interrupt scheduling

Generally, it is the OS’s job to discover and configure interrupt controllers present in the sys-
tem.

137



19 Virtual Memory

So far we jus looked at memory by the addresses supplied to instructions in a programs machine
code. All those addresses are virtual memory addresses. We can specify addresses with 64 bits
so can reference 264 different bits. This even exceeds the memory capacity of high-performance
machines by far. Those virtual addresses are only an illusion created for each process and do
not correspond to the addresses of physical, i.e., ’actual’ memory. The indirection to a physical
memory location is implemented with a hierarchy of different mappings.

All allocations we do from the program (malloc etc.) happen inside the program’s virtual
memory. The allocation then tells the system to map that virtual memory to some physical memory
so that we can actually work with those addresses.

19.1 Why Virtual Memory?

There are some fundamental reasons for virtual memory:

• Efficient use of limited main memory (RAM): We can only use it to store limited data and
consider it a cache for the disk to store parts of the virtual address spaces. Some non-cached
parts are stored on disk and unallocated parts are stored nowhere. We only keep active areas
in the cache/memory and transfer data back and forth as needed.

• Simplification of memory management for programmers: Each process gets the same large
address space and must not worry about which addresses are used by other programs.

• Isolated address space (security): Programs can’t interfere with another’s memory and, thus,
are prevented from accessing privileged information.

19.1.1 Problem 1: Limited Physical Memory Capacity

The 264 bytes of the virtual memory space exceed the few Gigabytes of memory of modern ma-
chines by magnitudes. We use VM as a ’cache’. Virtual memory corresponds to N = 2n contigu-
ous bytes. We can think of that data being stored on disk. The physical main memory (DRAM) is
then used as a cache for allocated virtual memory. Thus, we can create the illusion of the entire
64 bit address space while only having a subset of this data on-hand.

When discussing caching, we looked at cache blocks. Here we call the units, which are moved
between disk and main memory, pages. Those usually are about 4-8 KB in size (even up to 4 MB
in some cases).

Although we understand main memory as a cache for disk, this ’main memory cache’ is still
very slow compared to registers, L1, and L2 caches. To combat this, main memory is designed
with some approprite properties:

• Large page size: usually 4-8 KB (up to 4 MB)

• The cache is fully associative to not occur unnecessary misses. This requires a complicated
mapping function, which is different from caches.

• Due to the large penalty for a miss, we can afford and it makes sense to use highly sophisti-
cated (and expensive) replacement policies.

• write-back instead of write-through
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This is very efficient in practice because of locality. At any point, programs tend to access
a set of virtual pages called the working set. If the size of the working set is smaller than main
memory, we have good performance after compulsory misses. But if the size of the working set is
larger than main memory we occur trashing. This leads to a performance meltdown as pages are
constantly switched between main memory and disk.

19.1.2 Problem 2: Memory Management

All virtual pages from different processes are mapped to physical memory. The allocated physical
pages are scattered in memory. Through a well-chosen virtual to physical mapping, the OS can
simplify memory allocation and management. The OS can move physical pages and just update the
indirection so that the program does not notice it. Code and data can be shared among programs
because respective virtual addresses can map to the same physical address. This is useful, for
example, for shared library code.

19.1.3 Problem 3: Protection

There is some mechanism to translate/map a virtual address to a physical address. Besides the ac-
tual mapping, we also enclose some meta-information in this translation. The meta-data includes
permission bits with fields for supervisor, read, write, ... The page fault handler checks those per-
missions before providing the remapped address’s content. If the permissions would be violated,
it sends the process a SIGSEGV (segmentation fault) signal.

19.2 Address Translation

First, we need to learn to distinguish beteween different address spaces:

• linear address space: ordered set of contiguous natural numbers addresses {0, 1, 2, ...}

• virtual address space: set of N = 2n virtual addresses {0, 1, 2, ..., N − 1}

• physical address space: set of M = 2m physical addresses {0, 1, 2, ..., M − 1}

A virtual address from the address space of a program is mapped to a physical address for one
program. Thus, we separate the address from the stored data. And multiple virtual addresses from
different programs may reference the same physical address.

Physical addressing is only still used on some embedded systems such as cars, elevators, toast-
ers, ... Virtual addressing is used on all sophisticated modern systems such as laptops, desktops,
servers, workstations, ...

The necessary translation from virtual to physical addresses is done by the MMU (memory
management unit), which is configured and maintained by the OS. Thus, virtual memory is a
collaboration of hardware and software.
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Figure 72: Simplified Address Translation Process

The MMU must convert a VA (virtual address) to a PA (physical address). Each VA is split
into a VPN (virtual page number) and VPO (virtual page offset). The VPN is used to index into
the page table. A page table maintains the PPN (physical page number) for each VPN. Hence, for
each process a separate page table must exist. The page table not only stores the PPN but also
whether this is a valid page, i.e., currently in memory. And if not in memory but has been used,
this also provides information on how to locate the data on disk.

The page table is stored in memory itself and its location is given by the PTBR (page table
base register). The VPO is identical for the PPO. Notice that the PPN is usually smaller (has less
bits) than the VPN. But for x86 this does already not hold. Mostly, because virtual addresses are
less than 64 bits in x86 under the hood, and x86 wants to support virtualization/running multiple
operating systems at the same time. Hence, we need a multiple of everything - including the
availability of physical addresses.

Figure 73: Address Translation

Now we will consider the individual steps of translating an address. Here we consider phys-
ically indexed and physically tagged caches. Just remember this for now as it will be explained
later what it means.
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Page Hit

1. processor sends virtual address to MMU

2. MMU requests PTE from page table in memory

3. MMU receives PTE from memory

4. MMU sends physical address to cache/memory

5. cache/memory sends data word to processor

Figure 74: Page Hit Address Translation Process

Page Fault

1. processor sends virtual address to MMU

2. MMU requests PTE from page table in memory

3. MMU receives PTE from memory

4. valid bit is zero, so MMU triggers page fault exception

5. handler identifies victim page to evict (if necessary) and pages it out of disk if the dirty bit
is set

6. handler pages in the new page and update the PTE in memory

7. handler returns to original process, restarting faulting isntruction

Figure 75: Page Fault Address Translation Process
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19.3 Translation Lookaside Buffers (TLB)

For one memory request from the processor we now have to serve two actual requests to memory.
That noticeably degrades performance. To reduce the cost of memory requests we cache page
table entires (PTEs).

Instead of using the existing caching infrastructure, we use Translation Lookaside Buffers as
a cache for PTEs. This is a small hardware cache in the MMU that maps VPNs to PPNs. For a
small subset of the virtual address space, this contains the complete page table entries.

TLB Hit If we hit in the TLB we save an entire memory request.

1. processor sends virtual address to MMU

2. MMU indexes TLB with VPN

3. MMU gets PTE and validates that the valid bit is set (TLB hit) and that the entry contains a
PPN (and not only a disk reference).

4. MMU sends the constructed physical address (PA) to main memory/cache

5. cache/memory sends data word to processor

Figure 76: TLB Hit Address Translation Process

TLB Miss Notice that a TLB miss leads to an increase in latency compared to not having a TLB.
But, fortunately, TLB misses are rare so that this is acceptable.

1. processor sends virtual address to MMU

2. MMU indexes TLB with VPN

3. MMU gets PTE and detects that valid bit not set → MMU requests PTE from main memory
(or cache if physically indexed and tagged)

4. memory/cache delivers the PTE to the MMU and the TLB

5. MMU constructs the PA and sends it to the cache/memory
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6. memory/cache delivers the word to the CPU

Figure 77: TLB Miss Address Translation Process

19.4 Example: Simple Memory System

To not only learn the theoretical underpinning of virtual memory but also really understand it
by heart, we will look at how those different parts of the address translation look in an example
system.

We consider a memory system with:

• 14-bit virtual addresses

• 12-bit physical addresses

• page size of 64 bytes (corresponding to 6 bits in the address)

Figure 78: Simple Memory System Addresses

Page Table A page table would be indexed by the VPN and contain a PPN as well as metadata
such as the valid bit.
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VPN PPN Valid
00 28 1
01 - 0
02 33 1
03 02 1
04 - 0
05 16 1
06 - 0
07 - 0

VPN PPN Valid
08 13 1
09 17 1
OA 09 1
OB - 0
OC - 0
OD 2D 1
OE 11 1
OF OD 1

Figure 79: Example Page Table

TLB The TLB translates a VPN to a PPN. It is a cache indexed by the (lower) index bits of
the VPN and tagged by the remaining upper bits of the VPN. Below is an example of a 4-way
associative TLB cache with 4 sets.

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 - 0 09 0D 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 0D 1 0A 34 1 02 - 0

Figure 80: TLB Indexing

Cache If our cache is physically tagged, we consider the physical address and index with the
corresponding cache index bits and then compare the tags from the physical page number to find
a map. The below cache is physically tagged, has 16 lines/set and is direct mapped. Each block
has a size of 4 bytes.
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Idx Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 - - - -
2 1B 1 00 02 04 08
3 36 0 - - - -
4 32 1 43 6D 8 F 09
5 0D 1 36 72 F0 1D
6 31 0 - - - -
7 16 1 11 C2 DF 03

Idx Tag Valid B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 - - - -
A 2D 1 93 15 DA 3B

B OB 0 - - - -
C 12 0 - - - -
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 - 51− - -

Figure 81: Cache Indexing

19.5 Multi-Level Paging

Consider this scenario resembling x86 to compute the size of the page table in bytes. Each page
has size 4KB = 212bytes. Our virtual addresses comprise 48bits. And each page table entry is of
size 8bytes. We see that our VPN will comprise 48 − 12 = 36bits. For each VPN, we must store
one translation in the page table. So we have 236 · 8bytes = 239bytes as the size for the page table.
That corresponds to roughly 550GB. But no common modern consumer computer has that much
RAM. The solution to not needing to have that much RAM is multi-level paging, which we will
discuss now.

The idea of multi-level paging is to split the VPN into several parts and use those to index into
different tables hierarchically. But not all of these tables exist/are allocated. With only some bits,
we index into a first-level page table. Because we only have a fraction of the index bits, this page
table is manageable in size. The entries of this page table then contain pointers to next-level page
tables, which we then index with the next bits of the VPN. We can have k such nested page tables.

Figure 82: k-Level Paging Illustration

The key benefit comes from that not all page tables are actually allocated. Starting on the first
level page table, for many addresses we only have invalid pointers, because that region of virtual
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memory has never been used/allocated. Thus we always have an entire first level page table in
memory but all subsequent tables are only in memory after allocation, i.e., when actually needed.
This noticeably saves space, while slightly increasing the latency due to multiple indexing.

But notice that if we would use this multi-level page table for each CPU memory request, our
latency would increase significantly. For each page table indexing we would have to perform one
request to physical memory. But as we use the TLB, we can bypass most of those requests so that
we observe a performance gain in the end.

19.6 Case Study: Core i7 Virtual Memory System

Figure 83: Simplified Core i7 Memory System

• CR3 is the x86 first level page table base register.

• 48 bit virtual addresses: Despite it being a 64-bit architecture, we have 48-bit canonical
addresses that only allow ’free’ usage of 48 bits. This already provides a huge 256 TB of
addressable space. We do this, because our systems are not yet ready for full 64 bits as the
mapping tables would be huge and we can’t build that much DRAM yet anyway.

• 52 bit physical addresses of which 40 bits are used for the PPN.

• This increase from the virtual to the physical address size is useful if we want to run multiple
OSs for virtualization on a server, for example

• Pages are 4KB in size. And one page tables is exactly one page, i.e., 4KB, in size. This
means that one page table can store references to 212/23 = 29 = 512 pages.

Entries of the TLB contain the information from the page table. Among it:

• V: valid bit
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• TLBTag: cache tag

• PPN: translation of the address indicated by index & tag

• G: ”global” page according to PDE/PTE entry, indicates to not evict upon context switch
between processes

• S: ”supervisor-only” according to PDE, PTE

• W: page is writable according to PDE, PTE

• D: PTE has already ben marked ”dirty”

The translation process happens like this:

1. partition VPN into TLBT and TLBI

2. check, whether PTE vor the VPN is in the cache set of TLBI

3. yes: check permission and build physical address

4. no: read PTE from memory and build physical address

Notice, that the TLB not only stores PTEs but also PDEs. This enables the memory system to
skip some table indexing steps while resolving the address with the multi-level page table.

Figure 84: Core i7 TLB Translation

19.6.1 x86-64 Page Translation

Now, having understood the general setup of the x86 address translation setup, we look at how the
different levels of page tables actually look in memory. We have 4 different levels of page tables
with distinctive names: Page Map Table, Page Directory Pointer Table, Page Directory Table, and
Page Table. Starting with the Page Directory Pointer Table, we may not only store a reference to
a subsequent level page table but also a reference to an accordingly large page itself. This will be
discussed in Large Pages in more detail.

147



Furthermore, each level page table specifies permission bits. The permission bits apply to all
entries reachable from this page table entry. Thus, high-level restrictions apply even if on a lower
level we don’t specify them. The restrictions are valid for all covered virtual addresses.

Figure 85: x86 Page Table Hierarchy

The entries of the different page table hierarchies will only be discussed in referencing other
page tables up to ’Page Table’. Large pages are discussed later.

Page Map Table .

Figure 86: Page Map Table

• Page-Directory-Pointer Base Address: 40 most significant bits of physical page table ad-
dress (forces page tables to be 4KB aligned)

• Avail: Bits available to system programmers

• A: accessed (set by MMU, cleared by software)

• PCD: cache disabled (1) or enabled (0)

• PWT: write-through or write-back cache policy for this page table

• U/S: user or supervisor mode access
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• R/W: read-only or read-write access

• P: page table is present in memory (1) or not (0)

Page Directory Pointer Table .

Figure 87: Page Map Table

• Page-Directory Base Address: 40 most significant bits of physical page table address (forces
page tables to be 4KB aligned)

• Avail: Bits available to system programmers

• A: accessed (set by MMU, cleared by software)

• PCD: cache disabled (1) or enabled (0)

• PWT: write-through or write-back cache policy for this page table

• U/S: user or supervisor mode access

• R/W: read-only or read-write access

• P: page table is present in memory (1) or not (0)

Page Directory Table .

Figure 88: Page Map Table

• Page table physical Base Address: 40 most significant bits of physical page table address
(forces page tables to be 4KB aligned)

• Avail: Bits available to system programmers

• A: accessed (set by MMU, cleared by software)

• PCD: cache disabled (1) or enabled (0)

• PWT: write-through or write-back cache policy for this page table

• U/S: user or supervisor mode access
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• R/W: read-only or read-write access

• P: page table is present in memory (1) or not (0)

Page Table .

Figure 89: Page Map Table

• Physical page base Address: 40 most significant bits of physical page table address (forces
page tables to be 4KB aligned)

• Avail: Bits available to system programmers

• G: global page (don’t evict from TLB on task switch)

• PAT: page-attribute table (allow OS to control how individual pages are cached)

• D: dirty (set by MMU on writes)

• A: accessed (set by MMU, cleared by software)

• PCD: cache disabled (1) or enabled (0)

• PWT: write-through or write-back cache policy for this page table

• U/S: user or supervisor mode access

• R/W: read-only or read-write access

• P: page table is present in memory (1) or not (0)

19.6.2 x86 Paging Flow

Page Tables in Memory, Page in Memory .
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Figure 90: Flow with Page Tables in Memory and Page in Memory

MMU action:

• build physical address

• fetch data word

OS action: NONE

Page Tables in Memory, Page not in Memory .
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Figure 91: Flow with Page Tables in Memory and Page not in Memory

MMU action:

• page fault exception

• handler receives args: %rip of fault, VA of fault, fault type (non-present page, page-level
protection)

OS action:

• check for legal VA

• read PTE through PT

• find free physical page

• read VP from disk into physical page

• adjust PTE to point to PP, set ‘p=1‘

• restart faulting instruction

Page Tables not in Memory, Page not in Memory .
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Figure 92: Flow with Page Tables not in Memory and Page not in Memory

MMU action:

• page fault

OS action:

• swap in page table

• restart faulting instruction by returning from handler

goto previous case → multiple disk reads

19.7 Caches as part of Virtual Memory

We have seen L1, L2, ... caches. But one important question is how to access those. We already
discussed the general principle of dividing an address into offset bits, index bits, and tag bits. Here
we discuss which bits we take in the context of virtual and physical addresses.

There are different options with different tradeoffs. For x86 we use the virtually indexed,
physically tagged scheme as introduced below. That works, because the physical/virtual page
offset is 12 bits in size. And of those we use 6 bits as offset and 6 bits as index. But because
of this setup this is equivalent to physically indexed, physically tagged. We don’t say so to make
explicit that this enables us to already index into the cache before the address translation for the
entire physical address is complete.

This means that caches are bound by the virtual/physical page offset. Specifically, the index
and offset bits cannot exceed 12 bits. This prevents us from increasing associativity. But generally
we don’t want to do that anyway because it requires much more hardware.
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19.7.1 Virtually Indexed, Virtually Tagged (VV)

This is also referred to as virtual addressing. It only uses the virtual address to index into the
cache. The problem with this is that it may be that multiple processes use the same virtual address
for different data (homonyms). To prevent errors resulting from different processes using the
same cached data for different things, we have different possibilities. All of those are undesirable
because of their overhead.

• flash the cache on context switches

• force non-overlapping address-space layouts

• tag VAs with address-space ID (ASID)

Even when fixing homonyms, we still have synonyms, i.e., different VAs referring to the same
PA. Furthermore, write-back are also an issue. Because we don’t know how that data is relevant for
other processes with different VAs. The easy solution would be to make the cache write-through,
a burden we don’t want to put on the memory system.

Still, the clear benefit of VV is speed. Among all schemes, this is the fastest because we don’t
need to wait for any translation to complete. Today, it is rarely used on data caches. But it is still
in use for instruction caches.

19.7.2 Virtually Indexed, Physically Tagged (VP)

Here, we index with bits from the VPO/PPO so that we only need to select the correct line once
address translation through the MMU completed. Technically, we may also index with more bits
from the virtual address than covered by the offset - but then we loose the benefits we wish to
achieve with physical tagging.

The benefits are that we avoid issues from homonyms and synonyms, because we identify
data by its physical (unique!) address. Still, the virtual indexing with the offset bits allows us to
already start working with the cache before address translation is complete to combat the cost of
the translation latency.

This is common for L1 data caches.

19.7.3 Physically Indexed, Virtually Tagged (PV)

This is very complex and rare. How it works can be deduced from the other instances, but it won’t
be discussed.

19.7.4 Physically Indexed, Physically Tagged (PP)

This only uses the physical addresses. Thus, we must always wait for the MMU to finish address
translation before we can access the cache - which makes this the slowest addressing scheme. This
is only used off-core for performance reasons. The main benefit is that we don’t need to adhere to
alignment for picking the index, offset, and tag bits.

PP caches are frequently used for L2 or L3 unified caches. It can be used with bus snooping
to receive/supply DMA (direct memory access) data. Meaning, it observes main memory requests
and intervenes when it has the data in cache or otherwise copies it after retrieval. This is part of
some multiprocessing coherence protocols.
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19.8 Write Buffers

Because memory is slow, store operations take a long time to complete. To avoid stalling the CPU,
it usually contains write buffers. When the CPU wants to write, it queues the write in the buffer.
And when wanting to read, it checks the buffer first, before going to memory. Thus, it does not
have to wait for all memory accesses to complete.

19.9 Large Pages

x86 (and other architectures) also support more options for address translation. Specifically, there
are large pages. With normal-sized x86 pages, we use the lower 12 bits as the VPO/PPO. With
large pages, each page is 2 MB in size. With huge pages, it is 1 GB in size.

Technically, this is enabled by referencing to such a large/huge page from the page directory
pointer table/page directory table instead of referencing the next level page table. As a programmer
we can instruct the OS to use large/huge pages. For that, we may use libhugetlbfs as part of
the hugetlbfs package - something not detailed in class. This changes some instructions in the
link to the OS and replaces the implementations of malloc, calloc, and realloc.

19.9.1 x86 Large Pages

With large pages, we eliminate one level of the multi-level TLB and increase the page size. Instead
of four we only have three levels of address translation. Thus, we need to be able to store different
kind of entries as PDEs. The entry format we considered before contained one flag to indicate
whether it is a page base address of a page-table base address. The flag has been 0 so far. If we
now set it to one, we skip the last translation step.

Figure 93: Large Pages Translation Flow
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Figure 94: Large Pages Page Directory Entry

19.9.2 x86 Huge Pages

With huge pages, we eliminate another level of the TLB hierarchy. As with PDEs, we also have a
flag for PDPE. If we set that to 1, we directly store a pointer to the page table.

Figure 95: Huge Pages Page Directory Pointer Entry

19.10 Optimizing for the TLB

Earlier we discussed how to optimize code for cache performance. We can do the same to optimize
our code for TLB performance, i.e., maximize TLB hits and prevent trashing in the TLB. The TLB
is a cache after all.

Figure 96: Matrix Multiplication Setup
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If we say our L2 cache has size 16 MB = 224 = C = 221 doubles. We need 3B2 < C so that
we fit in the cache. Thus, B ≈ 800.

Now, additionally, we consider the TLB with 128 entries. Each page has size 4 KB and we
assume that the dimension of the matrix n is > 4 KB = 512 doubles. Thus, each row in the block
is on a different page. If we have more rows than TLB entries, we incur TLB thrashing. So we
want 3B ≤ 128, which leas to B ≈ 42. And of course we also need 8B ≤ 4096 = 4 KB to ensure
that one row of a block fits into one page. But this doesn’t change our B ≈ 42 estimate here.

An alternative approach is to copy the content of the four B × B blocks of our three matrices
to a contiguous memory region. Because we have O(B3) in the end, this O(B2) operation doesn’t
affect asymptotic runtime. But it allows for larger B, because now we only need 3B2 8

4096 = 128,
i.e., the pages we copy to must fit in the TLB. This would result in B ≈ 148.
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20 Multiprocessing & Multicore

There are various reasons, why people started developing multiprocessors and multicore systems,
including:

• one core/processor just didn’t meet performance requirements

• some jobs can be well parallelized

• multiple processes can run at the same time

Since about 2003, multiprocessors turned from research prototypes and high-performance su-
percomputers to consumer-grade products. This was caused by what some say is the failing of
Moore’s law. I.e., hardware supported speedups weren’t sufficient anymore to keep increasing
single core performance. Despite a continuously increasing transistor density, we can’t clock the
CPUs higher due to power dissipation/head management problems.

Power Wall This illustrates the issue of further scaling individual cores due to heat dissipation
issues. The power dissipation is

= Pdyn + Pleak + Pshort

• Pdyn: dynamic power for switching the transistors

• Pleak: transistor leakage (increasing with smaller transistors)

• Pshort: short circuit while switching

Pdyn = CV 2f (C: capacitance, V : supply voltage, f : clock frequency) can be kept stable
with increasing frequencies by decreasing the voltage. But then still power leakage increases,
leading to such an increase in power dissipation, which systems cannot handle.

• increase frequencies ⇒ more power dissipated ⇒ more cooling required

• decrease voltage ⇒ reduce dynamic power & increase static power leakage

This is a problem, because we’ve reached the practical power limit for cooling.

Memory Wall This describes the difference between the performance increase of compute/CPU
and memory. CPU speed increases exponentially faster than memory speed. This means that
memory has quickly become a bottleneck in computing.

ILP Wall This describes that CPUs are internally designed to execute instructions in parallel.
But there are limits to how much one can optimize. At some point, programs just don’t offer any
more instruction level parallelism to data dependencies. But also the hardware to support larger
context windows to consider more instructions to possibly execute in parallel is very expensive in
hardware.
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20.1 Symmetric Multiprocessing

Multiprocessing addresses the power, memory, ILP, ... walls. Because we want to manage power
handling while the demands on system increases (higher I/O and network speeds) and we have to
face the walls, we turn to multiprocessing to further increase performance.

Multiprocessing is what is done on all modern consumer-grade chips. Only some embedded
systems and special-purpose applications still work work with single-core systems. Most systems
are shared memory multiprocessors, which means a single physical address space is shared by all
processors and the communication between processors happens through shared variables in the
memory. Cache coherence (discussed later) is typically required for this to function properly.

One idea to implement multiprocessing is to attach multiple processors/cores to the same sys-
tem bus (of course with necessary modifications). The functionality and practicality of this ap-
proach is driven by caches. Otherwise, the memory requests from the different CPUs could cause
congestion at the memory interface. But with (shared) caches, this can be mediated.

20.2 Consistency and Coherence

Coherence is the concept that the values in different caches match each other. I.e., all processors
see a coherent view of the memory. Memory coherence defines requirements for the observed
behavior of reads and writes to the same memory location. This guarantees for instance, that if
two writes are issued after each other by two processors that the second write persists.

Consistency is the concept that considers the order of changes to memory as seen by different
processors. Memory consistency defines the behavior of reads and writes to different locations
(as observed by other processors). Consistency determines whether and how memory operations
can be reordered by the processor. To reason about program correctness, it is important to define
consistency. There are many different memory consistency models.

Most modern machines are cache coherent. This means that the memory, although being split
caches, behaves as a single memory array. The big advantage of cache coherency is the ease
of programming. Some multiprocessing programming paradigms rely on cache coherence. The
disadvantage is mostly on the side of the hardware designer as cache coherence is complex to
implement and prone to bugs. Besides, such more complex systems are typically also slower than
simpler designs.

To make working with consistency and coherence simpler, we introduce two terms:

• program order: This corresponds to the order in which a program on a processor appears to
issue reads and writes. It is only concerned with the reads/writes local to one processor. This
may not be the same order as in which the CPU issues the instruction to hardware/memory
due to instruction reordering as part of out-of-order execution, write buffers, write-back
caches, ...

• visibility order: This corresponds to the order in which all reads and writes (i.e., of all
processors) are seen by some processor. We may have to distinguish between different visi-
bility orders between different processors, depending on the memory model. Each processor
always reads the value written by the last write in its visibility order.

20.3 Sequential Consistency

This is a very fundamental consistency model that makes things very easy for the programmer.
But to guarantee this in hardware is very expensive. There are two core requirements:

1. Operations from a processor appear in program order as part of the visibility order.
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2. Every processor’s visibility order is the same (interleaving of all the program orders).

This works if processors issue memory operations in program order and do not perform op-
timizations through reordering and the memory system the totally orders all operations. One can
understand this as memory operations taking effect globally atomically. With sequential consis-
tency, all four memory operation orderings must be guaranteed to hold: Read after write, read
after read, write after read, and write after write. Those cannot be changed.

The advantages are that its easy to understand and program for the programmer and easy to
analyze automatically. However, on the other hand, it is hard to build a fast implementation, no
component (compiler, processor, ...) may reorder reads/writes to optimize execution, and one can-
not use write buffers but write-through instead.

When implementing sequential consistency one must make sure to prevent processors to read
outdated data from caches etc. When a write is performed, this data must be propagated throughout
the entire system or at least outdated copies must be invalidated.

Notice that while consistency and coherence are distinct, sequential consistency requires cache
coherence. However, we may have cache coherence without sequential consistency. More general
consistency models usually don’t require (cache) coherence.

20.4 Relaxing Sequential Consistency

Sequential consistency is very hard to implement in hardware. Thus, we relax the conditions of SC
to get a sensible hardware implementation while still offering a middle ground to programmability.

First, it is not generally guaranteed that all processors see the same visibility order/interleaving
of program orders of the other processors. We have to assume that those orders are different.

With out-of-order execution, write buffers, compiler optimizations, ... may reorder program’s
memory requests if they don’t show data dependencies within one thread/one processor instruction
stream. More formally, there are many different reordering options:

• write-to-read/read-after-write reordering: write; read; → read; write;

• write-to-write/write-after-write reordering: write1; write2;→write2; write1;

• read-to-read/read-after-read reordering: read1; read2; → read2; read1;

• read-to-write/write-after-read reordering: read; write; → write; read;

• weak ordering: no implicit order guarantees at all, i.e., all memory reorderings allowed

• break write atomicity (no single visibility order across processes)

Alpha PA-RISC ARM Power X86 32 X86 64 ia64 zSeries

Reads after reads 󰃀 󰃀 󰃀 󰃀 󰃀
Reads after writes 󰃀 󰃀 󰃀 󰃀 󰃀
Writes after reads 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀
Writes after writes 󰃀 󰃀 󰃀 󰃀 󰃀
Dependent reads 󰃀
Instr. Fetch after write 󰃀 󰃀 󰃀 󰃀 󰃀 󰃀

Figure 97: Allowed Reorderings for different ISAs
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If we don’t want to allow the by default possible reorderings, we can use the synchronization
instructions provided by an ISA. Then we have more guarantees. That is necessary for some al-
gorithms but comes at a runtime/performance cost. In x86 we use fences to prevent the reordering
of instructions beyond their bound: lfence (load fence), sfence (store fence), and mfence
(memory fence).

Processor Consistency (PC) is the standard consistency model for x86-64 machines and some-
times also called TSO (total store order). Earlier 32-bit x86 implementations only had weaker
guarantees. This guarantees that all processors see the writes from one processor in the order
they were issued. But different processors can see different interleavings of writes from different
processors.

20.5 Barriers and Fences

Generally, hardware only has very weak guarantees because it makes software run much faster in
case where the synchronization is not necessary. This means that consistency requirements must be
explicitly stated when required as they are essential for the functioning of some algorithms. To get
such stronger guarantees we use barriers (also called fences at times). Compiler barriers prevent
the compiler from reordering instructions, i.e., can be used by the programmer to enforce an
ordering. Then, memory barriers are introduced as instructions into the assembly (by the compiler)
and prevent the CPU from reordering instructions across the bound of the barrier.

20.5.1 Compiler Barriers

The compiler is prevented from reordering visible loads and stores. But register accessed may still
be reordered (as the are private). Compiler barriers are specific for different compilers. Common
synchronization libraries use such barriers under the hood.

• gcc: __asm__ __volatile__ (""::: "memory");

• intel eec: __memory_barrier()

• microsoft visual c & c++: __ReadWriteBarrier()

20.5.2 Memory Barriers

Memory barriers are just specific instructions that tell the processor to not reorder beyond their
bound. In x86 we have: MFENCE for memory barriers, SFENCE to prevent store reorderings, and
LFENCE to prevent load reorderings.

20.6 Cache Coherence with Snooping & MSI

When working with multiple processors, we can use snoopy caches to enable cache coherency.
Snooping means that processors ’snoop’ (i.e., listen in) on reads/writes from other processors.
When a processor then sees that some other processor writes to a block, it invalidates the lines
which cache this block in its own block.

The general idea of snooping is that each cache listens to the writes of the other caches and
invalidates its own blocks if they are written to elsewhere. The simplest implementation then uses
write-through caches to guarantee that any cache may then always access the newest data.
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The MSI (Modified, Shared, Invalid) protocol allows for cache coherency without requiring
caches to be write-through, which is very costly. It is the simplest protocol and works by maintain-
ing states for each line in each cache. The three states are: Modified, Shared, and Invalid. Some
line can only be dirty/modified in one cache at most. Upon events such as reads, writes, ... the
cache logic must update the states and possibly evict/flash/write-back the cache’s content. To do
so it deals with its own processor reads/writes but also utilizes the remote bus reads and writes to
respond to the actions of the other processors.

Important: This state is maintained for each cache block in each cache!

grey: processor initiated - orange: snoop-initated

Figure 98: MSI State Transitions

M S I
M 󰃀
S 󰃀 󰃀
I 󰃀 󰃀 󰃀

Figure 99: MSI State Invariants

But MSI clearly isn’t perfect. This protocol requires sending many messages over the bus.
Even many unnecessary messages. For instance, when we are the only processor to have some-
thing in the cache and then want to write. If we would know that nobody else has this in memory,
we could proceed to writing directly.

20.7 The MESI Cache Coherence Protocol

The MESI protocol is an extension of the MSI protocol by an additional state to optimize perfor-
mance. It first appeared int the x86 Pentium processor. In addition to the existing states, we now
have the state exclusive:

• modified: This is the only copy, it’s dirty.

• exclusive: This is the only copy, it’s clean.
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• shared: This might be one of several copies, all clean.

• invalid

The cache functionality is enabled by a more complex state machine, HIT signals, and a bus.
A HIT signal indicates to a remote processor that some block is in its cache. This is necessary so
that caches know whether they can load a block as exclusive or not. The bus is used to tell other
processors about reads and exclusive/eviction requirements.

PrRd: processor read (local) - PrWr: processor write (local)
BusRd: bus read (remote) - BusRdX: bus read exclusive (remote)

Figure 100: MESI State Transitions
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Figure 101: MESI State Invariants

But this still isn’t optimal. Dirty data is always written through memory. We say that this
is an ’invalidation-based’ protocol without any cache-to-cache transfers. This only is good if the
latency of the memory is noticeably smaller than the latency of a remote cache access. If that is
not the case, we consider modifications of MESI: MOESI and MESIF. Those are quite similar but
not the same. They mostly differ in MOESI being used by AMD and MESIF being used by Intel.

20.7.1 MOESI (AMD)

This introduces an additional state owned.

• modified: No other cached copies exist, local copy dirty
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• owned: Multiple dirty copies exist (all consistent). This copy has sole right to modify line.

• exclusive: No other cached copies exist, local copy clean

• shared: Other cached copies exist (all consistent, but might be dirty or clean). One other
copy might be able to write (owned state).

• invalid: Not in cache.

This allows to quickly performs reads for dirty cache lines without requiring another cache to
write back to memory. Instead, the owned of that cache line provides the most up to date version
of the data or tells the other caches to invalidate (in certain situations) when it modifies the line.

M O E S I
M 󰃀
O 󰃀 󰃀
E 󰃀
S 󰃀 󰃀 󰃀
I 󰃀 󰃀 󰃀 󰃀 󰃀

Figure 102: MOESI State Invariants

This approach will work well if the latency of remote caches is smaller than the latency of
main memory.

20.7.2 MESIF (Intel)

Instead of an owned state, we now have the forward state. However, we don’t allow multiple dirty
copies as with MOESI. But we allow one cache to be in forward state so that other caches not
necessarily have to go to memory to load some line.

• modified: No other cached copies exist, local copy dirty.

• exclusive: No other cached copies exist, local copy clean.

• shared: Other cached copies exist, all copies are clean. At most one other (clean) copy
might be in Forward state.

• forward: As shared, but this is the designated responder for requests. Always the most
recent cache to request line.

• invalid: Not in cache.

M E S I F
M 󰃀
E 󰃀
S 󰃀 󰃀 󰃀
I 󰃀 󰃀 󰃀 󰃀 󰃀
F 󰃀 󰃀

Figure 103: MOESI State Invariants
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20.8 Multicore Synchronization

When writing software for multi-core setups, we don’t manually include instructions for synchro-
nization as discussed in Barriers and Fences. Instead, we use higher-level constructs. We now
look at atomic operations mostly. There are instructions for such operations provided by the ISA
while also being accessible to the programmer. Even higher level concepts such as locks are then
implemented using atomics, fences, and memory bus locking.

• Atomic operations (on shared memory)

e.g.: test-and-set, compare-and-swap (characterized by appearing atomically despite
consisting of multiple steps)

ordering constraints (specified in the memory model) - at least in java, we can’t reorder
across atomic operations

• Interprocessor interrupts (IPIs)

This works by invoking an interrupt handler on a remote CPU. As this process is very
slow it is rarely used (only by non-critical OS operations usually).

Notice that synchronization operations are generally very expensive. Atomic operations usu-
ally block the entire memory system so that no other memory access can proceed. Thus, we want
to use those operations only if really necessary.

20.8.1 Test and Set

This is one of the simplest non-trivial atomic operations. It consists of two steps. While performing
those two steps, the memory bus must be ’locked’ so that nothing can interrupt this step or read
the memory location in between.

1. Read a memory’s location’s value into a register.

2. Store ”1” into the location.

TAS can be used to implement spinlocks. But due to the high cost of TAS and spinning, this
is very intensive on resources and inefficient. Instead we can to test and test-and-set. That first
does a cheaper plausibility test by doing a regular request to the cache before doing the cost TAS.
Unless we have contention, the modified check in the outer loop is likely to succeed.

Listing 118: Spinlock with TAS

1 void acquire(int *lock) {
2 while (TAS(lock) == 1);
3 }
4 void release(int *lock) {
5 *lock = 0;
6 }

Listing 119: Spinlock Acquire with TTAS

1 void acquire( int *lock) {
2 do {
3 while (*lock == 1);
4 } while (TAS(lock) == 1);
5 }

20.8.2 Compare and Swap

Listing 120: CAS Semantics

1 CAS(location, old, new) atomically {
2 1. Load location into value
3 2. If value == "old" then store "new" to location
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4 3. Return value
5 }

Implementing CAS requires bus locking or similar in the memory system. With CAS we can
implement almost all wait-free data structures. Theoretically, it is more powerful than TAS as
discussed in parallel programming.

CAS enables concurrent updates without locking. The general pattern to implement (wait-free)
data structures adheres to ”read-copy-update”. Readers all read the same data structure. Writers
create a copy, modify the copy, and then write back the copy. The old version is deleted as soon
as nobody requires it anymore. Usually this is done by always referencing a pointer to the data
structure, which enables simple replacement of large structures.

As part of the data structure we maintain a reference counter that stores how many references
currently exist to a data structure. That is to ensure that we can safely remove old instances of the
data structure after modifications when there are not references to such an old instance anymore.

Figure 104: Wait-Free Data Structure with CAS

Double CAS DCAS(loc1, old1, new1, loc2, old2, new2) is done atomically. Mean-
ing:

1. Compares two memory locations with different values.

2. If both match, each is updated with a different new value.

3. If not, existing values in the locations are loaded.

This is rarely implemented by hardware, because it is very prone to bugs and costly. It became
apparent in past years that one can just as well use CAS cleverly. Specifically, we use CAS on a
larger register. x86 supports CAS on up to 128 bits, for instance. Then we just pack the two data
values in 128 bits an use normal CAS.

ABA Problem CAS detects when the location content differs. But when the content is the same,
we perform the replacement. An issue arises if we change the data and then change back. With
CAS we cannot detect that the system state has changed. It seems that everything is as it has been
before. In Parallel Programming we discussed problems that may arise in a stack in great detail.

One ”solution” (that makes the problem very very unlikely) is to split the value into two parts:
The original value and a with each operation monotonically increasing counter. With CAS we
operate on both parts to modify our data and increase the pointer. If we change our data back to
what it has been originally, it is still very very likely that the pointer is different and did not wrap
around the exact amount to be what is was before.

Just as double CAS this is usually implemented with CAS on large registers.

166



20.8.3 x86 Synchronization

x86 has plenty synchronization operations/instructions. Among those:

• XCHG: atomic exchange of register and memory location (corresponds to TAS)

• LOCK prefix: executes the prefixed instruction with the (memory) bus locked

LOCK ADD, LOCK BTS, ...

• LOCK XADD: atomic fetch-and-add

• CMPXCHG: 32-bit compare and swap

• CMPXCHG8B: 64-bit compare and swap

• CMPXCHG16B: 128-bit compare and swap (x86 64 only!)

CMPXCHG16B is not the same as DCAS. It only works on one memory location. Still, it is used
to solve the ABA problem by using parts of the location for the counter and the other part for the
data.

20.9 Simultaneous Multithreading

Despite our effort with caches, memory is still the main bottleneck for computers. All memory
accesses still stall the processor. If reads need to be serviced from an off-core cache, this may also
lead to increased latencies. Furthermore, this approach isn’t scalable. With many processors, main
memory and the caches may be constantly contended, leading to bad performance.

The core problem is that processors need to stall, while memory accesses are being served.
With simultaneous multithreading, we try to utilize the processor’s resources as much as possible
by using them for something else while some process stalls. One idea pursued by out-of-order
executing, superscalar processors, etc. is to use all possible instruction level parallelism (ILP).
But there are limits to independence of instructions in a context window. The idea is to execute
instructions form other threads. Those are independent instruction streams and thus can be freely
executed. This is possible because we have many resources in a processor, which some thread
doesn’t need when waiting for some memory access to be served.

We start labeling instructions with an id for the thread, so that we can execute multiple threads
in an interleaved fashion in one processor. Multithreaded CPUs often appear as multiple CPUs to
the operation system.

• Coarse-grained multithreading: Whenever there is a long-latency memory stall, we switch
between threads. (Only issuing instructions for one thread each cycle.)

• Fine-grained multithreading: On each cycle, we switch between threads. (Only issuing
instructions for one thread each cycle.)

• Simultaneous Multithreading (SMT): On a superscalar machine, we also issue instructions
from multiple threads in one cycle to maximize resource utilization.

For individual threads, this may very well lead to worse performance. Maybe they don’t
execute again as soon as the memory access is served. And other threads may evict cache blocks
relevant for them from caches. Anyway, we typically get a 10 to 20 % performance increase. And
we do this, because compared to other approaches it is very cheap to implement because not much
additional hardware is required.
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For scientific computing, we often disable such functionality, because it leads to less pre-
dictable performance. But memory-intensive applications such as web servers exhibit major per-
formance improvements through the use of multithreading.

20.10 Non-Uniform Memory Access (NUMA)

Another issue with the current setup is memory bus contention. Despite having more processors,
we might not be able to scale the amount of cache at the same rate due to hardware constraints
(manufacturing & indexing/index bits limited). Thus, much more traffic happens on the memory
bus. When this get to high, performance drops.

As a solution, we use distributed memory architectures. Instead of having one shared memory
and I/O bus, modern systems use distributed memory architectures. We divide main memory into
chunks and assign some subset of CPUs some part of main memory. This subset of processors
has exclusive access to this region through a separate memory management unit. Those subsets
of processors are then connected through ’networking’ interconnects instead of a single bus. This
means that not all processor groups must be connected to all other processor groups. If a processor
now needs to access memory that is managed by a different processor group, message passing is
used to get the data. Compared to the earlier version, this approach is very scalable and can support
hundrets and thousands of CPUs.

Figure 105: NUMA System Layout

This approach removes the bottleneck, because the individual processor groups now have sep-
arate access paths to memory. They each manage their own bank. The ’networking’ interconnect
is not a bus! Instead of providing signals to all processor groups, messages are exchanged explic-
itly between two processor groups. Usually, one such processor group corresponds to a physical
CPU socket in a machine. The messages sent indicate read requests, write requests, responses
about cache content, cache invalidation instructions, ...

Not all processors need to be connected to all other processors. There may be various inter-
mediate processors, which need to forward communication requests. Still, all memory is globally
accessible. But the memory managed by the own processor group can of course be accessed faster.
One doesn’t have to go over an interconnect and exchange messages.

20.10.1 NUMA Cache Coherence

Maintaining cache coherency is more complicated with NUMA. A cache can’t simply snoop the
memory bus to get all updates, because we don’t have a bus anymore. One thing we can do is
to emulate a bus using the interconnect (bus emulation). Each node always sends a message to
all other nodes (processor groups), which must acknowledge the receipt. Implementing this in
hardware is very complicated.
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An alternative approach is to use a Cache Directory. Such a directory extends what is stored
for each memory location in a node for the part of memory managed by that node. In addition to
the data, now also bits indicating presence of this line in some other node’s cache in addition to an
owner entry that indicates which node currently has the latest modified version of this line.

This data is usually maintained in DRAM but could also be stored in the last-level cache.
This shows a major disadvantage: We loose a noticeably amount of memory capacity as it is used
to maintain the additional meta-data. (Some specific system loose up to 33% of their L3 cache
capacity.)

This is useful if lines are not widely shared. Because if they are, we don’t gain much from this
additional metadata, because we quite often just need to send a message to all other nodes anyway
to instruct them to flush. And the more nodes we have, the higher the benefit is too. Because then
the network bandwidth savings are proportionally higher compared to the number of bits. This is
because the distance to other nodes increases.

20.10.2 Performance Implications

From this distributed memory structure follows that access latencies are non-uniform (as the name
NUMA implies). With increasing distance the latency increases.

Figure 106: Example NUMA Cache Access Latencies

One thing that has a big negative impact on performance is false sharing. This refers to two
threads on different nodes writing to different parts of one cache line. On a single CPU this is
clearly no problem. On different nodes, the cache line needs to be transferred between the two
nodes on every write - although the change of the one thread is irrelevant to the other.

20.11 MCS Lock

Very simple lock implementations use spin locks. For a few processors this works well. But as
the system scales, contention increases and the approach leads to a lot of wasted cycles spent
spinning. MCS locks avoid spinning on remote data (which is bad for memory performance due
to long-latency read/write processes). Instead one only spins on local data, which does not impact
overall system performance, and wakes up once notified that we may access the external data.

To reiterate: The issue with locks by means of atomic operations is that the cache line contain-
ing the lock is a hot spot. It is continuously invalidated as every processor tries to acquire it. This
leads to an overhead and much much interconnect traffic. To reduce the interconnect traffic, we
introduce a queue so that processors don’t compete for the cache line but are notified when they
can access the lock. Meanwhile, they only need to check a local flag.
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Listing 121: MCS Lock Pseudocode

1 struct qnode {
2 struct qnode *next;
3 int locked;
4 };
5 typedef struct qnode lock_t;
6

7 void acquire(lock_t *lock, struct qnode *local) {
8 local->next = NULL;
9 struct qnode *prev = XCHG(lock, local);

10 if (prev) { // queue was non-empty
11 local->locked = 1;
12 prev->next = local;
13 while (local->locked)
14 ; // spin
15 }
16 }
17

18 void release(lock_t *lock, struct qnode *local) {
19 if (local->next == NULL) {
20 if ( CAS(lock, local, NULL) ) {
21 return;
22 }
23 while (local->next == NULL)
24 ; // spin
25 }
26 local->next->locked = 0;
27 }

As soon as systems scale beyond a few cores, the MCS lock typically outperforms a simple
spinlock.
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21 Devices & I/O

Devices are pieces hardware connected to our computer and visible to the software. This is espe-
cially relevant for OS programmers and the operating system. Below we will discuss how devices
integrated in a computer, its OS, how they communicate, ...

21.1 Device Registers

A processor/computer interacts with devices through device registers. Those are characterized by
having memory addresses. We write to and read from them. This corresponds to literally writing
to and reading from (main) memory. The device then also has access to those locations. Through
those memory locations, the device and processor communicate.

When the CPU loads from device registers, it obtain status information or reads input data.
When it stores something to device registers it sets the device state and configuration, writes out-
put data, or resets the device.

For the specifics of how those memory addresses work and how we access them, there are two
options: Memory mapped addresses and I/O instructions.

• When using memory mapped addresses, the registers appear as regular memory location in
main memory. We can interact with those addresses/the device through movb, movw, ...

• With I/O instructions, there is an entirely different address space (16 bit on x86). Today,
this is typically only used for older I/O devices. To access this separate address space (with
separate memory), we must use special instructions: inb, outb, ...

Additionally, we often have (separate) interrupt lines with which the device can ’notify’ the
processor that some event took place, i.e., that some transfer is complete (considering Direct Mem-
ory Access discussed below). This lets us avoid polling in driver software, which of course frees
up processor resources for other tasks.

When working with a device, we typically have a base address for the memory-mapped I/O
connection (provided by h/w specifications of the processor or OS or ...) and then access the
relevant parts of that memory region through offsets. What is located where in this region is
specified by device manual/technical specifications.

Addr. Name Description Notes
0 RBR Receive Buffer Register (read only) DLAB=0
0 THR Transmit Holding Register (write only) DLAB=0
1 IER Interrupt Enable Register DLAB=0
2 IIR Interrupt Identification Register (read only)
2 FCR FIFO Control Register (write only)
3 LCR Line Control Register
4 MCR MODEM Control Register
5 LSR Line Status Register
6 MSR MODEM Status Register
7 SCR Scratch Register DLAB=1
0 DLL Divisor Latch (LSB) DLAB=1
1 DLM Divisor Latch (MSB)

DLAB is the 7th bit of the LCR Register

Figure 107: Example - UART Memory Mapped Region
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Figure 108: Example - UART Line Status Register content

One major challenge with memory-mapped I/O is: Where do the memory addresses come
from? If devices just write to arbitrary locations, this could screw up data. Also the processor
needs to know where in memory to communicate with the device. For complex devices, discov-
erable busses (such as PCI) solve this challenge. They manage physical address allocation (with
the OS) for the devices, ... For simple devices, for example UART, we often have some specific
registers designated from the chip manufacturer to correspond to the region for the UART pins.

As already mentioned, a device an OS communicate through memory. But there are different
events with a specific interpretation in regards to changes in the memory content and interrupts:

• OS writing a device register ⇒ device can read that register

• OS reading a device register ⇒ OS gets device data, may trigger device

• device writing a device register ⇒ no direct action, OS may poll

• device requesting interrupt ⇒ CPU notified

• shared memory (DMA), later

⇒ CPU writes, DMA reads

⇒ DMA writes, CPU reads

Notice: Although we interact through memory, those locations don’t behave as memory would
usually. The content of registers may change without writes from the CPU, which causes issues
with caching (discussed in the next section). Similarly, writes to registers don’t simply store data.
Those writes can trigger actions on the device, ...

Another remark: When we write software for devices, we often end up in a situation, where
it appears to the compiler that we read from memory locations which nobody writes to. It then
may remove entire sections of code. But this is of course not what we want, because the memory-
mapped registers are volatile - their content could be changed by the device. Thus, we have to
declare used variables in C as volatile, which tells the compiler, that the registers are volatile
and the code can not be removed.

21.2 Dealing with Caches

When the device writes to the registers, the cache becomes invalid. So we can’t serve memory
reads from the cache. Using write-back caches causes problems, because we can’t predict when
some line will be written to main memory and then read by the device. Read and writes may not be
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combined in one cache line. If the processor writes to a line and then write back, it may overwrite
what the device has put in some other registers in main memory. We loose data.

It follows that device register accesses must bypass the cache. This is done by setting the ”no
cache” flat on the page table entries.

21.3 Device Drivers

The basic purpose of device drivers is clear. The bits sent by the device are, well, just bits. By
itself, we don’t learn much from the control registers. The device driver implements the specifica-
tion of what the different control bits, status bits, ... mean. Then, they allow higher-level calls to
the device, which they then translate into bits to put in main memory to instruct the device to do
something or to return data from the device.

To implement a driver, it becomes clear that the driver always needs to know the state of the
device to know how to interpret the currently set bits and know what the device can be instructed
to do next. One can understand the device and the device driver to contain state machines, which
must be in synchronized. Events then signal both state machines to switch to a new state. So that
we can work with a newly connected device, the first thing a device driver should do is to reset the
device to a known state.

21.4 Direct Memory Access (DMA)

So far we discussed how the OS/computer and some device interact through some memory lo-
cations. But in addition to such bits used for control and status information we have DMA in
modern systems. The reason is that for many peripherals (such as GPUs) we need to transfer a
lot of information. And having the CPU copy data from the control/status registers to some other
location takes up a lot of valuable compute time.

Instead, with DMA, we enable the device to put the data somewhere in main memory itself
so that the processor can work on other things. Once the transfer is complete, the device typically
issues only one interrupt in the end (compared to potently one interrupt for each set of bits) to let
the processor know. DMA can not only be used to transfer large amounts of data. It can also be
used to transfer control instruction from the OS/user application to the device.

DMA benefits:

• save CPU clock cycles

• prevent CPU cache pollution

• higher-performance: CPU and device work in parallel

• save memory bandwidth

To let the device bypass the CPU, we need a DMA controller. The DMA controller makes sure
to put the data at the intended location in main memory as instructed by some program. It then
provides a bridge between the connected device and main memory and issues a transfer complete
interrupt to the CPU once the transfer is complete.
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Figure 109: Legacy DMA Controller Setup from 1986

With a DMA data transfer, the CPU caches become inconsistent with main memory. To solve
this, we have three main possibilities:

• Affected addresses can be set as non-cachable by the DMA controller. But this is a large
performance hit as the CPU likely wants to process the data afterwards.

• Caches can ’snoop’ the DMAC bus transactions. Unfortunately, this does not scale well to
large systems.

• But what is done in practice mostly: The OS can explicitly flush/invalidate cached regions.
Thus, we see that cache management is an important part of device drivers!

On x86 PC hardware, PCI-based DMA transfers (PCI is introduced later and used for basi-
cally all ’modern’ devices) are cache coherent with CPU caches. But because this causes lots of
overhead, this functionality is not part of most other ISAs. On other systems we must:

• DMA reads (device reads from memory)

– before: CPU should flush the cache for that data so that main memory is up to date

– after: CPU should invalidate the cache for that address so that caches don’t hold values
of the memory content

• DMA writes (device writes to memory)

– before: CPU should flush or invalidate so that the cache does not contain to be outdated
values

– after: CPU should invalidate so that the newly transmitted data is fetched next

As with the memory-mapped I/O before, the device works directly on physical memory. But
the user and OS mostly work with virtual addresses. Thus, the OS and device drivers must convert
virtual addresses to physical addresses for correct mappings. Furthermore, it may be that a process
requests a device to transfer a lot of data into its virtual address space. But those addresses then
may span multiple pages, which are not guaranteed to be contiguously in memory. For such cases,
scatter-gather DMA controllers exist. Those take a list of addresses to put the transferred data in.
In newer systems this is often done with an IOMMU. It works similar to the MMU as it translates
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virtual addresses to physical addresses for writing to continuous blocks of virtual memory. The
IOMMU must be programmed and watched by the OS to match the MMU state!

Remember: DMA may be used to trasmit data and control information!

21.5 Buffer Rings and Description Rings

When we use Direct Memory Access, there needs to be a way for the device and the program/driver
to exchange information in a controlled manner. The data needs to be saved in a structured format
in memory. This is where buffer/descriptor rings come in. They are used as a common scheme to
store data. But notice that there are also other ways. For instance, a linked list could be used - but
we would call it a descriptor ring in chain mode (later more).

In any case, the device gets assigned some memory region. This assignment happens through
PCI (more below). Furthermore, we usually have one of the below explained rings for transmis-
sion (OS → device) and one ring for receiving (device → OS).

Buffer/descriptor rings are circular buffers. The ring’s elements are contiguous in memory.
If we have a buffer ring, the ring’s element contain the data of interest. If we have a descriptor
ring, the ring’s elements contain pointers to the actual data and meta-data. Today, we usually have
descriptor rings.

The OS stores the tail pointer and the device stores the head pointer. Whatever comes after the
tail pointer is said to be owned by the OS and what whatever comes after the head pointer is said
to be owned by the device. For each entry it is stored in a meta-data flag whether it is currently
OS- or device-owned. Through this flag, the OS and device can also detect when they have run up
to the other pointer.

• Underrun: The receiver is faster than the sender and must wait for additional packages to
arrive. If the receiver and has underrun, it may signal the sender to interrupt it once there is
data again, to avoid polling.

• Overrun: The sender is faster than the receiver and there isn’t space for more messages. If
the device is the sender, it then usually starts to discard packages. In a status register, it can
signal the processor that it lost some packages. The CPU is a sender, it usually waits to
continue writing data into the buffer.

21.6 Example - Network Interface Card (NIC)

We won’t provide details here. This is more to enable a better understanding how DMA is used in
real-world applications. Specifically, this shows some selected information on the DEC ”Tulip” -
an ethernet adaptor.
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Figure 110: NIC and DMA

Register Description Address offset
CSRO Bus mode 0x00
CSR1 Transmit poll demand 0x08
CSR2 Receive poll demand 0x10
CSR3 Receive list base address 0x18
CSR4 Transmit list base address 0x28
CSR5 Status 0x28
CSR6 Operation mode 0x30
CSR7 Interrupt enable 0x38
CSR8 Missed frames and overflow counter 0x40
CSR9 Boot ROM, serial ROM, and MII management 0x48

CSR10 Boot ROM programming address 0x50
CSR11 General-purpose timer 0x58
CSR12 General-purpose port 0x60
CSR15 Watchdog timer 0x78

Figure 111: Memory Mapped Control and Status Registers

Figure 112: Descriptors of Descriptor Ring

21.7 Device Initialization

We already mentioned that the device and its driver can be interpreted to contain state machines,
which must be kept in sync. This is done by putting them in a known state initially. This is called
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resetting. The OS resets the device once connected. The device’s manual will describe a way to
do so.

The OS/driver must:

• wait for the hw to become responsive

• stop the drive doing anything, i.e., let it run idle

• create all necessary shared data structures such as ring buffers, ...

• write the control registers of the device to have it start working and inform it about the
memory regions to use (allocated in last step) if it uses DMA

21.8 I/O State Machines

21.8.1 hardware

Figure 113: HW - Sending Packets

21.8.2 software

Figure 114: SW - Sending Packets
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Figure 115: SW - Receiving Packets

21.9 Discoverable Busses - PCI

Some questions remain unanswered: How does the OS know about connected devices? Where
do devices have their registers in physical memory? Which interrupt vectors are used for which
device? Those problems are solved by the design of the I/O bus, such as the Peripheral Component
Interconnect (PCI).

PCI is a standard for connecting devices. Several extension such as PCI-X, PCMCIA, PCI-
Express, ... exist. It defines a set of bus protocols for communication between devices and a
software-visible interface to I/O hardware. Today, PCIe is used instead. It is an extension of the
software-visible interface defined by PCI.

PCI solves many problems:

• device discovery (finding out which devices are connected)

• address allocation (for the device’s registers)

• which exception vectors to call on a certain device interrupt signal

• intelligent DMA (’bus mastering’ devices no longer need a DMA controller)

PCI is set up as a tree. On the one side, Tthe PCI root bridge connects to the CPU, main
memory, ... On the other side it connects to peripherals and PCI-PCI bridges. Those allow subtrees
of PCI peripherals to be connected at shared bandwidth.

Figure 116: PCI Tree
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PCI has several neat properties. Among them being that the PCI address space is flat. This
means that each device asks for a set of address ranges (physical space or I/O space). The PCI
bridges in the PCI tree then remap addresses from main memory or I/O memory to the requested
addresses. This allows each device to appear as a contiguous address range in memory.

Furthermore, PCI devices are self-describing. A configuration header is initially accessed
through the parent bridge. This header contains:

• manufacturer ID (16 bits) - assigned by a consortium

• model ID (16 bits)

• class code, what kind of device is this (24 bits)

• version identifier (8 bits)

• allocated/required address ranges

• interrupts

• electrical information

• ...

When working with PCI there are several setup steps to follow for the PCI system:

• Finding all devices

– We find all ’root’ PCI bridges of which there may be multiple in a modern system.
– Read the configuration file for all attached devices, and do so recursively if one en-

counters another bridge. Add all found devices to a list of devices and functions. Also
record the address space requirements for each device.

• Allocating Addresse

– Find address ranges for each device and bridge. Each bridge has a range which in-
cludes all its children’s ranges. This is recursive till the end of the PCI tree. Each
device has a size of address range it needs. All ranges must be aligned to a power of 2.

– Program each PCI bridge with translation information. Each device is, thus, assigned
a base-address/range pair (BAR).

Once setup, there are two main ways for PCI devices to interact with the system:

• PCI Interrupts

– PCI uses four interrupt lines: INTA, INTB, INTC, INTD
– Bridges allow arbitrary wiring of the four device device lines each to bridge lines. The

root bridge translates the signals to system interrupts.
– PCI Express introduced Message-signaled interrupts (MSI). A device writes an encod-

ing of an interrupt to a specific memory address. This is translated by the root bridge
to a system interrupt. Such interrupts can target specific cores or APICs (Advanced
Programmable Interrupt Controller).

• DMA over PCI

– PCI allows Bus Mastering. This means that devices can issue read/write transactions
to anywhere in memory by themselves. External DMA controllers, thus, become ir-
relevant. This provides much more flexibility and intelligent behavior from the device
side.
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21.10 Beyond

Today, devices are very complex. The descriptors generates by DMA can be thought of as a
program instructing some user program to perform specific tasks. It’s not like devices supply raw
data. Instead, the with increasing frequency can be considered processors themselves.

With bus mastering, we also enable intelligent devices, which can freely work with main
memory, access other devices, ... This allows for complex interactions between the CPU and
devices. High-performance is enabled through extensive in-RAM buffering.

Besides, devices today don’t always mean bulky hardware to connect to a system. Advanced
GPUs etc. are of course still large and require to be manually connected. But many devices
are already build-in today: APICs, MMUs, power controllers, GPUs, DSP, USB controllers, ...
Systems that already integrate many of their devices are called Systems on a Chip (SoCs).
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